-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLSTM.py
273 lines (242 loc) · 10.7 KB
/
LSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# %%
import os
from tqdm import tqdm
import numpy as np
import pandas as pd
import argparse
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import losses
from tensorflow.keras import optimizers
from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler
from tensorflow.keras.layers import Input, LSTM, Embedding, Dense, Dropout, Concatenate, Bidirectional, GlobalMaxPooling1D
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.utils import to_categorical
from gensim.models import Word2Vec, KeyedVectors
from layers import Add, LayerNormalization
from layers import MultiHeadAttention, PositionWiseFeedForward
from layers import PositionEncoding
from tensorflow.keras.callbacks import Callback
import tensorflow.keras.backend as K
# %%
def get_data():
DATA = {}
DATA['X1_train'] = np.load('tmp/inputs_0.npy', allow_pickle=True)
DATA['X1_val'] = np.load('tmp/inputs_1.npy', allow_pickle=True)
DATA['X2_train'] = np.load('tmp/inputs_2.npy', allow_pickle=True)
DATA['X2_val'] = np.load('tmp/inputs_3.npy', allow_pickle=True)
DATA['X3_train'] = np.load('tmp/inputs_4.npy', allow_pickle=True)
DATA['X3_val'] = np.load('tmp/inputs_5.npy', allow_pickle=True)
DATA['X4_train'] = np.load('tmp/inputs_6.npy', allow_pickle=True)
DATA['X4_val'] = np.load('tmp/inputs_7.npy', allow_pickle=True)
DATA['X5_train'] = np.load('tmp/inputs_8.npy', allow_pickle=True)
DATA['X5_val'] = np.load('tmp/inputs_9.npy', allow_pickle=True)
DATA['X6_train'] = np.load('tmp/inputs_10.npy', allow_pickle=True)
DATA['X6_val'] = np.load('tmp/inputs_11.npy', allow_pickle=True)
DATA['Y_gender_train'] = np.load('tmp/gender_0.npy', allow_pickle=True)
DATA['Y_gender_val'] = np.load('tmp/gender_1.npy', allow_pickle=True)
DATA['Y_age_train'] = np.load('tmp/age_0.npy', allow_pickle=True)
DATA['Y_age_val'] = np.load('tmp/age_1.npy', allow_pickle=True)
DATA['creative_id_emb'] = np.load(
'tmp/embeddings_0.npy', allow_pickle=True)
DATA['ad_id_emb'] = np.load(
'tmp/embeddings_1.npy', allow_pickle=True)
DATA['product_id_emb'] = np.load(
'tmp/embeddings_2.npy', allow_pickle=True)
DATA['advertiser_id_emb'] = np.load(
'tmp/embeddings_3.npy', allow_pickle=True)
DATA['industry_emb'] = np.load(
'tmp/embeddings_4.npy', allow_pickle=True)
DATA['product_category_emb'] = np.load(
'tmp/embeddings_5.npy', allow_pickle=True)
# DATA['Y_age_train'] = pd.read_csv(
# 'data/train_preliminary/user.csv').age.values-1
# DATA['Y_age_val'] = pd.read_csv(
# 'data/train_preliminary/user.csv').age.values-1
# DATA['Y_gender_train'] = pd.read_csv(
# 'data/train_preliminary/user.csv').gender.values-1
# DATA['Y_gender_val'] = pd.read_csv(
# 'data/train_preliminary/user.csv').gender.values-1
return DATA
# %%
DATA = get_data()
cols_to_emb = ['creative_id', 'ad_id', 'advertiser_id',
'product_id', 'industry', 'product_category']
emb_matrix_dict = {
'creative_id': [DATA['creative_id_emb'].astype('float32')],
'ad_id': [DATA['ad_id_emb'].astype('float32')],
'product_id': [DATA['product_id_emb'].astype('float32')],
'advertiser_id': [DATA['advertiser_id_emb'].astype('float32')],
'industry': [DATA['industry_emb'].astype('float32')],
'product_category': [DATA['product_category_emb'].astype('float32')],
}
conv1d_info_dict = {'creative_id': 128, 'ad_id': 128, 'advertiser_id': 128,
'industry': 128, 'product_category': 128,
'product_id': 128, 'time': 32, 'click_times': -1}
# %%
seq_length_creative_id = 100
labeli = 'age'
# %%
class BiLSTM_Model:
def __init__(self, n_units):
'''
各种参数
:param n_units: for bilstm
'''
self.n_units = n_units
def get_emb_layer(self, emb_matrix, input_length, trainable):
'''
embedding层 index 从maxtrix 里 lookup出向量
'''
embedding_dim = emb_matrix.shape[-1]
input_dim = emb_matrix.shape[0]
emb_layer = keras.layers.Embedding(input_dim, embedding_dim,
input_length=input_length,
weights=[emb_matrix],
trainable=trainable)
return emb_layer
def get_input_layer(self, name=None, dtype="int64"):
'''
input层 字典索引序列
'''
input_layer = keras.Input(
shape=(seq_length_creative_id,), dtype=dtype, name=name)
return input_layer
def get_input_double_layer(self, name=None, dtype="float32"):
'''
input层 dense seqs
'''
input_layer = keras.Input(
shape=(seq_length_creative_id,), dtype=dtype, name=name)
return input_layer
def gru_net(self, emb_layer, click_times_weight):
emb_layer = keras.layers.SpatialDropout1D(0.3)(emb_layer)
x = keras.layers.Conv1D(
filters=emb_layer.shape[-1], kernel_size=1, padding='same', activation='relu')(emb_layer)
# 以上为embedding部分
# bilstm
x = keras.layers.Bidirectional(keras.layers.LSTM(
self.n_units, dropout=0.2, return_sequences=True))(x)
x = keras.layers.Bidirectional(keras.layers.LSTM(
self.n_units, dropout=0.2, return_sequences=True))(x)
conv1a = keras.layers.Conv1D(filters=128, kernel_size=2,
padding='same', activation='relu',)(x)
conv1b = keras.layers.Conv1D(filters=64, kernel_size=4,
padding='same', activation='relu', )(x)
conv1c = keras.layers.Conv1D(filters=32, kernel_size=8,
padding='same', activation='relu',)(x)
gap1a = keras.layers.GlobalAveragePooling1D()(conv1a)
gap1b = keras.layers.GlobalAveragePooling1D()(conv1b)
gap1c = keras.layers.GlobalMaxPooling1D()(conv1c)
max_pool1 = keras.layers.GlobalMaxPooling1D()(x)
concat = keras.layers.concatenate([max_pool1, gap1a, gap1b, gap1c])
return concat
def get_embedding_conv1ded(self, embedding_vector, filter_size=128):
x = keras.layers.Conv1D(filters=filter_size, kernel_size=1,
padding='same', activation='relu')(embedding_vector)
return x
def create_model(self, num_class, labeli):
"""
构建模型的函数
"""
K.clear_session()
# cols to use
inputlist = cols_to_emb
# 这个字典用于指定哪些embedding层也可以进行训练
train_able_dict = {'creative_id': False, 'ad_id': False, 'advertiser_id': False,
'product_id': False, 'industry': True, 'product_category': True, 'time': True, 'click_times': True}
# 所有的input层
inputs_all = []
for col in inputlist:
inputs_all.append(self.get_input_layer(name=col))
# inputs_all.append(self.get_input_double_layer(name = 'click_times'))# 没用上
# input->seq embedding
emb_layer_concat_dict = {}
for index, col in enumerate(inputlist):
layer_emb = self.get_emb_layer(
emb_matrix_dict[col][0], input_length=seq_length_creative_id, trainable=train_able_dict[col])(inputs_all[index])
emb_layer_concat_dict[col] = layer_emb
# 每个列各自降维提取信息
for col in inputlist:
if conv1d_info_dict[col] > 0:
emb_layer_concat_dict[col] = self.get_embedding_conv1ded(
emb_layer_concat_dict[col], filter_size=conv1d_info_dict[col])
# 所有列拼接到一起
concat_all = keras.layers.concatenate(
list(emb_layer_concat_dict.values()))
# 进bilstm
concat_all = self.gru_net(concat_all, inputs_all[-1])
concat_all = keras.layers.Dropout(0.3)(concat_all)
x = keras.layers.Dense(256)(concat_all)
x = keras.layers.PReLU()(x)
x = keras.layers.Dense(256)(x)
x = keras.layers.PReLU()(x)
outputs_all = keras.layers.Dense(
num_class, activation='softmax', name=labeli)(x) # 10分类
model = keras.Model(inputs_all, outputs_all)
print(model.summary())
optimizer = keras.optimizers.Adam(1e-3)
model.compile(optimizer=optimizer,
# loss='sparse_categorical_crossentropy',
loss=tf.keras.losses.CategoricalCrossentropy(
from_logits=False),
metrics=['accuracy'])
return model
# %%
model = BiLSTM_Model(n_units=128).create_model(10, 'age')
# %%
# train_examples = 720000
# val_examples = 180000
train_examples = 810000
val_examples = 90000
model.fit(
{
'creative_id': DATA['X1_train'][:train_examples],
'ad_id': DATA['X2_train'][:train_examples],
'product_id': DATA['X3_train'][:train_examples],
'advertiser_id': DATA['X4_train'][:train_examples],
'industry': DATA['X5_train'][:train_examples],
'product_category': DATA['X6_train'][:train_examples]
},
{
# 'gender': DATA['Y_gender_train'][:train_examples],
'age': DATA['Y_age_train'][:train_examples],
},
validation_data=(
{
'creative_id': DATA['X1_val'][:val_examples],
'ad_id': DATA['X2_val'][:val_examples],
'product_id': DATA['X3_val'][:val_examples],
'advertiser_id': DATA['X4_val'][:val_examples],
'industry': DATA['X5_val'][:val_examples],
'product_category': DATA['X6_val'][:val_examples]
},
{
# 'gender': DATA['Y_gender_val'][:val_examples],
'age': DATA['Y_age_val'][:val_examples],
},
),
epochs=10,
batch_size=1024,
# callbacks=[checkpoint, earlystop_callback, reduce_lr_callback],
)
# %%
# earlystop_callback = tf.keras.callbacks.EarlyStopping(
# monitor="val_accuracy",
# min_delta=0.00001,
# patience=3,
# verbose=1,
# mode="max",
# baseline=None,
# restore_best_weights=True,
# )
# csv_log_callback = tf.keras.callbacks.CSVLogger(
# filename='logs_save/{}_nn_v0621_{}d_bilstm.log'.format(labeli, count), separator=",", append=True)
# reduce_lr_callback = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_accuracy',
# factor=0.5,
# patience=1,
# min_lr=0.0000001)
# callbacks = [earlystop_callback, csv_log_callback, reduce_lr_callback]