-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLSTM_age.py
193 lines (164 loc) · 5.25 KB
/
LSTM_age.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# %%
# 生成词嵌入文件
from tqdm import tqdm
import numpy as np
import pandas as pd
from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler
from gensim.models import Word2Vec, KeyedVectors
from tensorflow.keras.layers import Input, LSTM, Embedding, Dense, Dropout
from tensorflow.keras.models import Model, Sequential
import tensorflow as tf
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.preprocessing.text import Tokenizer
from mail import mail
import os
from keras.utils import to_categorical
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
# %%
# f = open('tmp/userid_creative_ids.txt')
f = open('word2vec/userid_creative_ids.txt')
num_creative_id = 2481135+1
tokenizer = Tokenizer(num_words=num_creative_id)
tokenizer.fit_on_texts(f)
f.close()
# %%
path = "word2vec/wordvectors_creative_id.kv"
wv = KeyedVectors.load(path, mmap='r')
# %%
f = open('word2vec/userid_creative_ids.txt')
max_len_creative_id = -1
for line in f:
current_line_len = len(line.strip().split(' '))
max_len_creative_id = max(max_len_creative_id, current_line_len)
f.close()
# %%
creative_id_tokens = list(wv.vocab.keys())
embedding_dim = 128
embedding_matrix = np.random.randn(len(creative_id_tokens)+1, 128)
cnt = 0
for creative_id in creative_id_tokens:
embedding_vector = wv[creative_id]
if embedding_vector is not None:
index = tokenizer.texts_to_sequences([creative_id])[0][0]
embedding_matrix[index] = embedding_vector
# %%
debug = True
if debug:
max_len_creative_id = 100
# shape:(sequence长度,)
input_x = Input(shape=(None,))
# cpus = tf.config.experimental.list_logical_devices('CPU')
# with tf.device('cpu'):
# emb = Embedding(input_dim=num_creative_id,
# output_dim=128,
# weights=[embedding_matrix],
# trainable=False,
# input_length=max_len_creative_id,
# mask_zero=True)
# x = emb(input_x)
x = Embedding(input_dim=num_creative_id,
output_dim=128,
weights=[embedding_matrix],
trainable=True,
input_length=max_len_creative_id,
mask_zero=True)(input_x)
x = LSTM(1024, return_sequences=True)(x)
x = LSTM(512, return_sequences=False)(x)
x = Dense(128)(x)
x = Dropout(0.5)(x)
output_y = Dense(10, activation='softmax')(x)
model = Model([input_x], output_y)
# model = Sequential([
# Embedding(num_creative_id, 128,
# weights=[embedding_matrix],
# trainable=False,
# input_length=None),
# LSTM(1024),
# Dense(1, activation='sigmoid')
# ])
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])
# %%
# 测试数据格式(batch_size, sequence长度)
test_data = np.array([1, 2, 3, 4]).reshape(1, -1)
model.predict(test_data)
# %%
creative_id_seq = []
with open('word2vec/userid_creative_ids.txt')as f:
for text in f:
creative_id_seq.append(text.strip())
# %%
if debug:
sequences = tokenizer.texts_to_sequences(creative_id_seq[:900000//1])
else:
sequences = tokenizer.texts_to_sequences(creative_id_seq)
X_train = pad_sequences(sequences, maxlen=max_len_creative_id)
# %%
# 使用迭代器实现
# X_train = pad_sequences(sequences, maxlen=max_len_creative_id)
# %%
user_train = pd.read_csv(
'data/train_preliminary/user.csv').sort_values(['user_id'], ascending=(True,))
Y_gender = user_train['gender'].values
Y_age = user_train['age'].values
Y_age = Y_age-1
Y_gender = Y_gender - 1
# %%
if debug:
Y_gender = Y_gender[:900000//1]
Y_age = Y_age[:900000//1]
Y_age = to_categorical(Y_age)
# %%
checkpoint = ModelCheckpoint("tmp/age_epoch_{epoch:02d}.hdf5", monitor='val_loss', verbose=0,
save_best_only=False, mode='auto', period=1)
# %%
try:
model.fit(X_train,
Y_age,
validation_split=0.1,
epochs=100,
batch_size=512,
callbacks=[checkpoint],
)
mail('train lstm for age done!!!')
except Exception as e:
e = str(e)
mail('train lstm for age failed!!! ' + e)
# %%
model.load_weights('tmp/age_epoch_01.hdf5')
# %%
if debug:
sequences = tokenizer.texts_to_sequences(
creative_id_seq[900000:])
else:
sequences = tokenizer.texts_to_sequences(
creative_id_seq[900000:])
X_test = pad_sequences(sequences, maxlen=max_len_creative_id, padding='post')
# %%
y_pred = model.predict(X_test, batch_size=4096)
# %%
y_pred = np.argmax(y_pred, axis=1)
y_pred = y_pred.flatten()
y_pred = y_pred+1
# %%
res = pd.DataFrame({'predicted_age': y_pred})
res.to_csv(
'data/ans/lstm_age.csv', header=True, columns=['predicted_age'], index=False)
# %%
mail('lstm predict age done!!!')
# %%
user_id_test = pd.read_csv(
'data/test/clicklog_ad_user_test.csv').sort_values(['user_id'], ascending=(True,)).user_id.unique()
ans = pd.DataFrame({'user_id': user_id_test})
# %%
gender = pd.read_csv('data/ans/lstm_gender.csv')
age = pd.read_csv('data/ans/lstm_age.csv')
# %%
ans['predicted_gender'] = gender.predicted_gender
ans['predicted_age'] = age.predicted_age
ans.to_csv('data/ans/LSTM.csv', header=True, index=False,
columns=['user_id', 'predicted_age', 'predicted_gender'])
# %%
mail('save ans to csv done!')
# %%