-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLSTM_gender.py
174 lines (140 loc) · 4.31 KB
/
LSTM_gender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# %%
# 生成词嵌入文件
from tqdm import tqdm
import numpy as np
import pandas as pd
from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler
from gensim.models import Word2Vec, KeyedVectors
from tensorflow.keras.layers import Input, LSTM, Embedding, Dense, Dropout,
from tensorflow.keras.models import Model, Sequential
import tensorflow as tf
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.preprocessing.text import Tokenizer
from mail import mail
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
# %%
debug = True
# %%
if debug:
f = open('tmp/userid_creative_ids.txt')
else:
f = open('word2vec/userid_creative_ids.txt')
pass
num_creative_id = 2481135+1
tokenizer = Tokenizer(num_words=num_creative_id)
tokenizer.fit_on_texts(f)
f.close()
# %%
path = "word2vec/wordvectors_creative_id.kv"
wv = KeyedVectors.load(path, mmap='r')
# %%
# f = open('word2vec/userid_creative_ids.txt')
# max_len_creative_id = -1
# for line in f:
# current_line_len = len(line.strip().split(' '))
# max_len_creative_id = max(max_len_creative_id, current_line_len)
# f.close()
# %%
creative_id_tokens = list(wv.vocab.keys())
embedding_dim = 128
embedding_matrix = np.random.randn(len(creative_id_tokens)+1, 128)
cnt = 0
for creative_id in creative_id_tokens:
embedding_vector = wv[creative_id]
if embedding_vector is not None:
index = tokenizer.texts_to_sequences([creative_id])[0][0]
embedding_matrix[index] = embedding_vector
# %%
if debug:
max_len_creative_id = 100
# shape:(sequence长度, )
input_x = Input(shape=(None,))
x = Embedding(input_dim=num_creative_id,
output_dim=128,
weights=[embedding_matrix],
trainable=True,
input_length=max_len_creative_id,
mask_zero=True)(input_x)
x = LSTM(1024, return_sequences=True)(x)
x = LSTM(512, return_sequences=False)(x)
x = Dense(128)(x)
x = Dropout(0.5)(x)
output_y = Dense(1, activation='sigmoid')(x)
model = Model([input_x], output_y)
# 这种方式构建模型灵活性差但是方便构建
# model = Sequential([
# Embedding(num_creative_id, 128,
# weights=[embedding_matrix],
# trainable=False,
# input_length=None),
# LSTM(1024),
# Dense(1, activation='sigmoid')
# ])
model.summary()
model.compile(loss='binary_crossentropy',
optimizer='adam', metrics=['accuracy'])
# %%
# 测试数据格式(batch_size, sequence长度)
test_data = np.array([1, 2, 3, 4]).reshape(1, -1)
model.predict(test_data)
# %%
creative_id_seq = []
with open('word2vec/userid_creative_ids.txt') as f:
for text in f:
creative_id_seq.append(text.strip())
# %%
if debug:
sequences = tokenizer.texts_to_sequences(creative_id_seq[:900000//1])
else:
sequences = tokenizer.texts_to_sequences(creative_id_seq)
X_train = pad_sequences(sequences, maxlen=max_len_creative_id, padding='post')
# %%
user_train = pd.read_csv(
'data/train_preliminary/user.csv').sort_values(['user_id'], ascending=(True,))
Y_gender = user_train['gender'].values
Y_age = user_train['age'].values
Y_gender = Y_gender - 1
# %%
if debug:
Y_gender = Y_gender[:900000//100]
# %%
checkpoint = ModelCheckpoint("tmp/gender_epoch_{epoch:02d}.hdf5", monitor='val_loss', verbose=0,
save_best_only=False, mode='auto', period=1)
# %%
try:
mail('start train lstm')
model.fit(X_train,
Y_gender,
validation_split=0.1,
epochs=100,
batch_size=768,
callbacks=[checkpoint],
)
mail('train gender lstm done!!!')
except Exception as e:
e = str(e)
mail('train lstm failed!!! ' + e)
# %%
model.load_weights('tmp\gender_epoch_01.hdf5')
# %%
if debug:
sequences = tokenizer.texts_to_sequences(
creative_id_seq[900000:])
else:
sequences = tokenizer.texts_to_sequences(
creative_id_seq[900000:])
X_test = pad_sequences(sequences, maxlen=max_len_creative_id)
# %%
y_pred = model.predict(X_test, batch_size=4096)
y_pred = np.where(y_pred > 0.5, 1, 0)
y_pred = y_pred.flatten()
# %%
y_pred = y_pred+1
# %%
res = pd.DataFrame({'predicted_gender': y_pred})
res.to_csv(
'data/ans/lstm_gender.csv', header=True, columns=['predicted_gender'], index=False)
# %%
mail('predict lstm gender done')
# %%