-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLightGBM.py
234 lines (204 loc) · 7.98 KB
/
LightGBM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# %%
import lightgbm as lgb
import pandas as pd
import numpy as np
import time
from sklearn.metrics import accuracy_score
# %%
print('Loading all data...')
start = time.time()
all_train_data = pd.read_csv(
'data/train_preliminary/clicklog_ad_user_train_eval_test.csv')
df_test = pd.read_csv('data/test/clicklog_ad.csv')
print('Split data into train and validation...')
TRAIN_DATA_PERCENT = 0.9
msk = np.random.rand(len(all_train_data)) < TRAIN_DATA_PERCENT
df_train = all_train_data[msk]
df_val = all_train_data[~msk]
feature_columns = df_train.columns.values.tolist()
feature_columns.remove('age')
feature_columns.remove('gender')
label_age, label_gender = ['age'], ['gender']
X_train = df_train[feature_columns]
y_train_gender = df_train[label_gender]
# set label 0 and 1
y_train_gender.gender = y_train_gender.gender-1
y_train_age = df_train[label_age]
y_train_age.age = y_train_age.age-1
X_val = df_val[feature_columns]
y_val_gender = df_val[label_gender]
y_val_gender.gender = y_val_gender.gender-1
y_val_age = df_val[label_age]
y_val_age.age = y_val_age.age-1
X_test = df_test[feature_columns]
print('Loading data uses {:.1f}s'.format(time.time()-start))
categorical_feature = ['industry', 'advertiser_id',
'product_category', 'product_id', 'ad_id', 'creative_id', 'user_id']
# 构建性别数据
lgb_train_gender = lgb.Dataset(
X_train, y_train_gender, feature_name=feature_columns, categorical_feature=categorical_feature)
lgb_eval_gender = lgb.Dataset(
X_val, y_val_gender, reference=lgb_train_gender, feature_name=feature_columns, categorical_feature=categorical_feature)
# 构建年龄数据
lgb_train_age = lgb.Dataset(
X_train, y_train_age, feature_name=feature_columns, categorical_feature=categorical_feature)
lgb_eval_age = lgb.Dataset(
X_val, y_val_age, reference=lgb_train_age, feature_name=feature_columns, categorical_feature=categorical_feature)
# %%
# write to hdf5 to read fast
X_train.to_hdf('data/clicklog_ad_user_train_eval_test.h5',
key='X_train', mode='w')
y_train_gender.to_hdf('data/clicklog_ad_user_train_eval_test.h5',
key='y_train_gender', mode='a')
y_train_age.to_hdf('data/clicklog_ad_user_train_eval_test.h5',
key='y_train_age', mode='a')
X_val.to_hdf('data/clicklog_ad_user_train_eval_test.h5', key='X_val', mode='a')
y_val_gender.to_hdf('data/clicklog_ad_user_train_eval_test.h5',
key='y_val_gender', mode='a')
y_val_age.to_hdf('data/clicklog_ad_user_train_eval_test.h5',
key='y_val_age', mode='a')
X_test.to_hdf('data/clicklog_ad_user_train_eval_test.h5',
key='X_test', mode='a')
# %%
# read from hdf5
X_train = pd.read_hdf(
'data/clicklog_ad_user_train_eval_test.h5', key='X_train', mode='r')
y_train_gender = pd.read_hdf('data/clicklog_ad_user_train_eval_test.h5',
key='y_train_gender', mode='r')
y_train_age = pd.read_hdf('data/clicklog_ad_user_train_eval_test.h5',
key='y_train_age', mode='r')
X_val = pd.read_hdf(
'data/clicklog_ad_user_train_eval_test.h5', key='X_val', mode='r')
y_val_gender = pd.read_hdf('data/clicklog_ad_user_train_eval_test.h5',
key='y_val_gender', mode='r')
y_val_age = pd.read_hdf(
'data/clicklog_ad_user_train_eval_test.h5', key='y_val_age', mode='r')
X_test = pd.read_hdf(
'data/clicklog_ad_user_train_eval_test.h5', key='X_test', mode='r')
# %%
def LGBM_gender():
params_gender = {
'task': 'train',
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': {'binary_logloss', 'binary_error'}, # evaluate指标
'max_depth': -1, # 不限制树深度
# 更高的accuracy
'max_bin': 2**10-1,
'num_leaves': 2**10,
'min_data_in_leaf': 1,
'learning_rate': 0.01,
# 'feature_fraction': 0.9,
# 'bagging_fraction': 0.8,
# 'bagging_freq': 5,
# 'is_provide_training_metric': True,
'verbose': 1
}
print('Start training...')
# train
gbm = lgb.train(params_gender,
lgb_train_gender,
num_boost_round=10,
valid_sets=lgb_eval_gender,
# early_stopping_rounds=5,
)
print('training done!')
print('Saving model...')
# save model to file
gbm.save_model('tmp/model_gender.txt')
print('save model done!')
return gbm
# %%
def LGBM_age():
params_age = {
'boosting_type': 'gbdt',
'objective': 'multiclass',
"num_class": 10,
# fine-tuning最重要的三个参数
'num_leaves': 2**10-1,
'max_depth': -1, # 不限制树深度
'min_data_in_leaf': 1,
# 更高的accuracy
# 'max_bin': 2**9-1,
'metric': {'multi_logloss', 'multi_error'},
'learning_rate': 0.1,
# 'feature_fraction': 0.9,
# 'bagging_fraction': 0.8,
# 'bagging_freq': 5,
'verbose': 1
}
print('Start training...')
# train
gbm = lgb.train(params_age,
lgb_train_age,
num_boost_round=50,
valid_sets=lgb_eval_age,
# early_stopping_rounds=5,
)
print('Saving model...')
# save model to file
gbm.save_model('tmp/model_age.txt')
print('save model done!')
return gbm
# %%
gbm_gender = LGBM_gender()
gbm_age = LGBM_age()
# gbm_gender = lgb.Booster(model_file='tmp/model_gender.txt')
# gbm_age = lgb.Booster(model_file='tmp/model_age.txt')
# %%
def evaluate():
print('Start predicting...')
y_pred_gender_probability = gbm_gender.predict(
X_val, num_iteration=gbm_gender.best_iteration)
threshold = 0.5
y_pred_gender = np.where(y_pred_gender_probability > threshold, 1, 0)
# eval
print('threshold: {:.1f} The accuracy of prediction is:{:.2f}'.format(threshold,
accuracy_score(y_val_gender, y_pred_gender)))
# %%
print('Start evaluate data predicting...')
y_pred_age_probability = gbm_age.predict(
X_val, num_iteration=gbm_age.best_iteration)
y_pred_age = np.argmax(y_pred_age_probability, axis=1)
# eval
print('The accuracy of prediction is:{:.2f}'.format(
accuracy_score(y_val_age, y_pred_age)))
d = {'user_id': X_val.user_id.values.tolist(), 'gender': y_pred_gender.tolist(),
'age': y_pred_age.tolist()}
ans_df = pd.DataFrame(data=d)
# 投票的方式决定gender、age
ans_df_grouped = ans_df.groupby(['user_id']).agg(
lambda x: x.value_counts().index[0])
ans_df_grouped.gender = ans_df_grouped.gender+1
ans_df_grouped.age = ans_df_grouped.age+1
ans_df_grouped.to_csv('data/ans.csv', header=True)
# %%
evaluate()
# %%
def test():
print('Start predicting test gender data ...')
y_pred_gender_probability = gbm_gender.predict(
X_test, num_iteration=gbm_gender.best_iteration)
threshold = 0.5
y_pred_gender = np.where(y_pred_gender_probability > threshold, 1, 0)
print('Start predicting test age data ...')
y_pred_age_probability = gbm_age.predict(
X_test, num_iteration=gbm_age.best_iteration)
y_pred_age = np.argmax(y_pred_age_probability, axis=1)
print('start voting...')
d = {'user_id': X_test.user_id.values.tolist(),
'predicted_age': y_pred_age.tolist(),
'predicted_gender': y_pred_gender.tolist(),
}
ans_df = pd.DataFrame(data=d)
# 投票的方式决定gender、age
ans_df_grouped = ans_df.groupby(['user_id']).agg(
lambda x: x.value_counts().index[0])
ans_df_grouped['user_id'] = ans_df_grouped.index
ans_df_grouped.gender = ans_df_grouped.gender+1
ans_df_grouped.age = ans_df_grouped.age+1
columns_order = ['user_id', 'predicted_age', 'predicted_gender']
ans_df_grouped[columns_order].to_csv(
'data/ans_test.csv', header=True, columns=['user_id', 'predicted_age', 'predicted_gender'], index=False)
print('Done!!!')
test()