-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLightGBM_embedding_128_dim.py
301 lines (264 loc) · 9.88 KB
/
LightGBM_embedding_128_dim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# %%
from tensorflow.keras.layers import Dense
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import StratifiedKFold
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
import lightgbm as lgb
import time
from sklearn.metrics import accuracy_score
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow import keras
from keras.utils import to_categorical
from tensorflow.keras import layers
from tensorflow.keras.utils import multi_gpu_model
import gc
# %%
samples = 1000
all_train_data = pd.read_csv('word2vec/word2vec/train_data_128_dim.csv',
nrows=900000, skiprows=None)
# nrows=samples, skiprows=None).sort_values(['user_id'], ascending=(True,))
columns = all_train_data.columns.values.tolist()
test_data = pd.read_csv('word2vec/data_vec_product_category_industry_16dimension.csv',
names=columns,
skiprows=900001,
# nrows=samples,
).sort_values(['user_id'], ascending=(True,))
user_train = pd.read_csv(
'data/train_preliminary/user.csv').sort_values(['user_id'], ascending=(True,))
Y_gender = user_train['gender'].values
Y_age = user_train['age'].values
all_train_data['gender'] = user_train.gender
all_train_data['age'] = user_train.age
TRAIN_DATA_PERCENT = 0.9
mask = np.random.rand(len(all_train_data)) < TRAIN_DATA_PERCENT
df_train = all_train_data[mask]
df_val = all_train_data[~mask]
X_train = df_train[columns].values
Y_train_gender = df_train.gender.values
Y_train_age = df_train.age.values
X_val = df_val[columns].values
Y_val_gender = df_val.gender.values
Y_val_age = df_val.age.values
# del train_data
# gc.collect()
X_test = test_data[columns].values
# del test_data
# gc.collect()
user_id_test = pd.read_csv(
'data/test/clicklog_ad_user_test.csv').sort_values(['user_id'], ascending=(True,)).user_id.unique()
ans = pd.DataFrame({'user_id': user_id_test})
# %%
# 构建性别数据
encoder = LabelEncoder()
encoder.fit(Y_train_gender)
Y_train_gender = encoder.transform(Y_train_gender)
Y_val_gender = encoder.transform(Y_val_gender)
lgb_train_gender = lgb.Dataset(X_train, Y_train_gender)
lgb_eval_gender = lgb.Dataset(X_val, Y_val_gender, reference=lgb_train_gender)
# 构建年龄数据
encoder = LabelEncoder()
encoder.fit(Y_train_age)
Y_train_age = encoder.transform(Y_train_age)
Y_val_age = encoder.transform(Y_val_age)
lgb_train_age = lgb.Dataset(X_train, Y_train_age)
lgb_eval_age = lgb.Dataset(X_val, Y_val_age, reference=lgb_train_age)
# %%
def LGBM_gender():
params_gender = {
'task': 'train',
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': {'binary_logloss', 'binary_error'}, # evaluate指标
'max_depth': -1, # 不限制树深度
# 更高的accuracy
'max_bin': 2**10-1,
'num_leaves': 2**10,
'min_data_in_leaf': 1,
'learning_rate': 0.01,
# 'feature_fraction': 0.9,
# 'bagging_fraction': 0.8,
# 'bagging_freq': 5,
# 'is_provide_training_metric': True,
'verbose': 1
}
print('Start training...')
# train
gbm = lgb.train(params_gender,
lgb_train_gender,
num_boost_round=50,
valid_sets=lgb_eval_gender,
# early_stopping_rounds=5,
)
print('training done!')
print('Saving model...')
# save model to file
gbm.save_model('tmp/model_gender.txt')
print('save model done!')
return gbm
# %%
def LGBM_age():
params_age = {
'boosting_type': 'gbdt',
'objective': 'multiclass',
"num_class": 10,
# fine-tuning最重要的三个参数
'num_leaves': 2**10-1,
'max_depth': -1, # 不限制树深度
'min_data_in_leaf': 1,
# 更高的accuracy
# 'max_bin': 2**9-1,
'metric': {'multi_logloss', 'multi_error'},
'learning_rate': 0.1,
# 'feature_fraction': 0.9,
# 'bagging_fraction': 0.8,
# 'bagging_freq': 5,
'verbose': 1
}
print('Start training...')
# train
gbm = lgb.train(params_age,
lgb_train_age,
num_boost_round=50,
valid_sets=lgb_eval_age,
# early_stopping_rounds=5,
)
print('Saving model...')
# save model to file
gbm.save_model('tmp/model_age.txt')
print('save model done!')
return gbm
# %%
gbm_gender = LGBM_gender()
# %%
gbm_age = LGBM_age()
# %%
def evaluate():
print('Start predicting...')
y_pred_gender_probability = gbm_gender.predict(
X_val, num_iteration=gbm_gender.best_iteration)
threshold = 0.5
y_pred_gender = np.where(y_pred_gender_probability > threshold, 1, 0)
# eval
print('threshold: {:.1f} The accuracy of prediction is:{:.2f}'.format(threshold,
accuracy_score(Y_val_gender, y_pred_gender)))
print('Start evaluate data predicting...')
y_pred_age_probability = gbm_age.predict(
X_val, num_iteration=gbm_age.best_iteration)
y_pred_age = np.argmax(y_pred_age_probability, axis=1)
# eval
print('The accuracy of prediction is:{:.2f}'.format(
accuracy_score(Y_val_age, y_pred_age)))
# d = {'user_id': X_val.user_id.values.tolist(), 'gender': Y_pred_gender.tolist(),
# 'age': y_pred_age.tolist()}
# ans_df = pd.DataFrame(data=d)
# # 投票的方式决定gender、age
# ans_df_grouped = ans_df.groupby(['user_id']).agg(
# lambda x: x.value_counts().index[0])
# ans_df_grouped.gender = ans_df_grouped.gender+1
# ans_df_grouped.age = ans_df_grouped.age+1
# ans_df_grouped.to_csv('data/ans.csv', header=True)
# %%
evaluate()
# %%
def test():
print('Start predicting test gender data ...')
y_pred_gender_probability = gbm_gender.predict(
X_test, num_iteration=gbm_gender.best_iteration)
threshold = 0.5
y_pred_gender = np.where(y_pred_gender_probability > threshold, 1, 0)
print('Start predicting test age data ...')
y_pred_age_probability = gbm_age.predict(
X_test, num_iteration=gbm_age.best_iteration)
y_pred_age = np.argmax(y_pred_age_probability, axis=1)
ans['predicted_age'] = y_pred_age+1
ans['predicted_gender'] = y_pred_gender+1
ans.to_csv('data/ans/LGBM.csv', header=True, index=False,
columns=['user_id', 'predicted_age', 'predicted_gender'])
# ans_df = pd.DataFrame(data=d)
# 投票的方式决定gender、age
# ans_df_grouped = ans_df.groupby(['user_id']).agg(
# lambda x: x.value_counts().index[0])
# ans_df_grouped['user_id'] = ans_df_grouped.index
# ans_df_grouped.gender = ans_df_grouped.gender+1
# ans_df_grouped.age = ans_df_grouped.age+1
# columns_order = ['user_id', 'predicted_age', 'predicted_gender']
# ans_df_grouped[columns_order].to_csv(
# 'data/ans_test.csv', header=True, columns=['user_id', 'predicted_age', 'predicted_gender'], index=False)
# print('Done!!!')
test()
# %%
# %%
# df_train = df_train.sort_values(
# ["user_id"], ascending=(True,))
# # %%
# def get_batch(file_name,):
# for row in open(file_name, "r"):
# yield 1
# for line in get_batch('data/train_data.csv'):
# for line in get_batch('test.py'):
# print(line)
# break
# %%
# 合成用户embedding
# path = "word2vec/wordvectors.kv"
# wv = KeyedVectors.load(path, mmap='r')
# with open('word2vec/userid_creativeids.txt', 'r')as f:
# lines = f.readlines()
# lines = [[int(e) for e in line.split(' ')] for line in lines]
# number_train_user = 900000
# number_test_user = 1000000
# user_train = lines[:number_train_user]
# user_test = lines[number_train_user:]
# columns = ['c'+str(i) for i in range(128)]
# data = {}
# for col_name in columns:
# data[col_name] = pd.Series([], dtype='float')
# df_user_train = pd.DataFrame(data)
# df_user_test = pd.DataFrame(data)
# # %%
# for line in tqdm.tqdm(user_train):
# user_embedding_train = np.zeros(128)
# for creative_id in line:
# user_embedding_train += wv[str(creative_id)]
# user_embedding_train = user_embedding_train / len(line)
# tmp = pd.DataFrame(user_embedding_train.reshape(-1,
# len(user_embedding_train)), columns=columns)
# df_user_train = df_user_train.append(tmp)
# # %%
# for line in tqdm.tqdm(user_test):
# user_embedding_test = np.zeros(128)
# for creative_id in line:
# user_embedding_test += wv[str(creative_id)]
# user_embedding_test = user_embedding_test / len(line)
# tmp = pd.DataFrame(user_embedding_test.reshape(-1,
# len(user_embedding_train)), columns=columns)
# df_user_test = df_user_test.append(tmp)
# # %%
# # 将同一个用户creative_id相加平均后即为一个用户的Embedding
# all_train_data = pd.read_csv(
# 'data/train_preliminary/clicklog_ad_user_train_eval_test.csv')
# all_train_data = all_train_data.sort_values(
# ["user_id"], ascending=(True))
# # %%
# all_test_data = pd.read_csv(
# 'data/test/clicklog_ad_user_test.csv')
# all_test_data = all_test_data.sort_values(
# ["user_id"], ascending=(True))
# # %%
# assert df_user_train.shape[0] == all_train_data.shape[0]
# df_user_train['user_id'] = all_train_data['user_id']
# df_user_train['gender'] = all_train_data['gender']
# df_user_train['age'] = all_train_data['age']
# df_user_train.to_hdf('word2vec/df_user_train_test.h5',
# key='df_user_train', mode='w')
# # %%
# assert df_user_test.shape[0] == all_test_data.shape[0]
# df_user_test['user_id'] = all_test_data['user_id']
# df_user_test.to_hdf('word2vec/df_user_train_test.h5',
# key='df_user_test', mode='a')
# %%