-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtf_idf.py
182 lines (167 loc) · 5.55 KB
/
tf_idf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# %%
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
import lightgbm as lgb
from mail import mail
# %%
user = pd.read_csv(
'data/train_preliminary/user.csv').sort_values(['user_id'], ascending=(True,))
Y_train_gender = user.gender
Y_train_age = user.age
corpus = []
f = open('word2vec/userid_creativeids.txt', 'r')
# train_examples = 100
# test_examples = 200
# train_test = 300
train_test = 1900000
train_examples = 900000
test_examples = 1000000
flag = 0
for row in f:
# row = [[int(e) for e in seq] for seq in row.strip().split(' ')]
row = row.strip()
corpus.append(row)
flag += 1
if flag == train_test:
break
# %%
Y_train_gender = Y_train_gender.iloc[:train_examples]-1
Y_train_age = Y_train_age.iloc[:train_examples]-1
# %%
min_df = 30
max_df = 0.001
vectorizer = TfidfVectorizer(
token_pattern=r"(?u)\b\w+\b",
min_df=min_df,
# max_df=max_df,
# max_features=128,
dtype=np.float32,
)
all_data = vectorizer.fit_transform(corpus)
print('(examples, features)', all_data.shape)
print('train tfidf done! min_df={}, max_df={} shape is {}'.format(
min_df, max_df, all_data.shape[1]))
mail('train tfidf done! min_df={}, max_df={} shape is {}'.format(
min_df, max_df, all_data.shape[1]))
# %%
train_val = all_data[:train_examples, :]
# %%
X_test = all_data[train_examples:(train_examples+test_examples), :]
# %%
test_user_id = pd.read_csv(
'data/test/click_log.csv').sort_values(['user_id'], ascending=(True)).user_id.unique()
# %%
test_user_id = test_user_id[:test_examples]
# %%
X_train_gender, X_val_gender, Y_train_gender, Y_val_gender = train_test_split(
train_val, Y_train_gender, train_size=0.9, random_state=1)
lgb_train_gender = lgb.Dataset(X_train_gender, Y_train_gender)
lgb_eval_gender = lgb.Dataset(
X_val_gender, Y_val_gender, reference=lgb_train_gender)
X_train_age, X_val_age, Y_train_age, Y_val_age = train_test_split(
train_val, Y_train_age, train_size=0.9, random_state=1)
lgb_train_age = lgb.Dataset(X_train_age, Y_train_age)
lgb_eval_age = lgb.Dataset(
X_val_age, Y_val_age, reference=lgb_train_age)
# %%
def LGBM_gender(epoch, early_stopping_rounds):
params_gender = {
'task': 'train',
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': {'binary_logloss', 'binary_error'}, # evaluate指标
'max_depth': -1, # 不限制树深度
# 更高的accuracy
'max_bin': 2**10-1,
'num_leaves': 2**10,
'min_data_in_leaf': 1,
'learning_rate': 0.01,
# 'feature_fraction': 0.9,
# 'bagging_fraction': 0.8,
# 'bagging_freq': 5,
# 'is_provide_training_metric': True,
'verbose': 1
}
print('Start training...')
# train
gbm = lgb.train(params_gender,
lgb_train_gender,
num_boost_round=epoch,
valid_sets=lgb_eval_gender,
early_stopping_rounds=early_stopping_rounds,
)
print('training done!')
print('Saving model...')
# save model to file
gbm.save_model('tmp/model_gender_dfmin_30.txt')
print('save model done!')
return gbm
# %%
def LGBM_age(epoch, early_stopping_rounds):
params_age = {
'boosting_type': 'gbdt',
'objective': 'multiclass',
"num_class": 10,
# fine-tuning最重要的三个参数
'num_leaves': 2**10-1,
'max_depth': -1, # 不限制树深度
'min_data_in_leaf': 1,
# 更高的accuracy
# 'max_bin': 2**9-1,
# 'num_iterations': 50, # epoch
'metric': {'multi_logloss', 'multi_error'},
'learning_rate': 0.01,
'feature_fraction': 0.9,
'bagging_fraction': 0.8,
# 'bagging_freq': 5,
'verbose': 1
}
print('Start training...')
# train
gbm = lgb.train(params_age,
lgb_train_age,
num_boost_round=epoch,
valid_sets=lgb_eval_age,
early_stopping_rounds=early_stopping_rounds,
)
print('Saving model...')
# save model to file
gbm.save_model('tmp/model_age_dfmin_30.txt')
print('save model done!')
return gbm
# %%
# gbm_gender = lgb.Booster(model_file='tmp/model_gender.txt')
# gbm_age = lgb.Booster(model_file='tmp/model_age.txt')
# %%
gbm_gender = LGBM_gender(epoch=2000, early_stopping_rounds=500)
# %%
mail('train gender done!')
gbm_age = LGBM_age(epoch=2000, early_stopping_rounds=500)
mail('train age done!')
# %%
def test():
print('Start predicting test gender data ...')
y_pred_gender_probability = gbm_gender.predict(
X_test, num_iteration=gbm_gender.best_iteration)
threshold = 0.5
y_pred_gender = np.where(y_pred_gender_probability > threshold, 1, 0)
print('Start predicting test age data ...')
y_pred_age_probability = gbm_age.predict(
X_test, num_iteration=gbm_age.best_iteration)
y_pred_age = np.argmax(y_pred_age_probability, axis=1)
print('start voting...')
y_pred_gender = y_pred_gender+1
y_pred_age = y_pred_age+1
d = {'user_id': test_user_id.tolist(),
'predicted_age': y_pred_age.tolist(),
'predicted_gender': y_pred_gender.tolist(),
}
ans_df = pd.DataFrame(data=d)
columns_order = ['user_id', 'predicted_age', 'predicted_gender']
ans_df[columns_order].to_csv(
'data/ans/tf_idf.csv', header=True, columns=['user_id', 'predicted_age', 'predicted_gender'], index=False)
print('Done!!!')
test()
# %%