forked from linbirg/qt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhigh_roe.py
459 lines (396 loc) · 15.3 KB
/
high_roe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
from kuanke.wizard import *
from jqdata import *
import numpy as np
import pandas as pd
import talib
import datetime
## 初始化函数,设定要操作的股票、基准等等
def initialize(context):
# 设定基准
set_benchmark('000300.XSHG')
# 设定滑点
set_slippage(FixedSlippage(0.02))
# True为开启动态复权模式,使用真实价格交易
set_option('use_real_price', True)
# 设定成交量比例
set_option('order_volume_ratio', 1)
# 股票类交易手续费是:买入时佣金万分之三,卖出时佣金万分之三加千分之一印花税, 每笔交易佣金最低扣5块钱
set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003, min_commission=5), type='stock')
# 个股最大持仓比重
g.security_max_proportion = 1
# 选股频率
g.check_stocks_refresh_rate = 1
# 买入频率
g.buy_refresh_rate = 1
# 卖出频率
g.sell_refresh_rate = 1
# 最大建仓数量
g.max_hold_stocknum = 4
# 选股频率计数器
g.check_stocks_days = 0
# 买卖交易频率计数器
g.buy_trade_days=0
g.sell_trade_days=0
# 获取未卖出的股票
g.open_sell_securities = []
# 卖出股票的dict
g.selled_security_list={}
# 股票筛选初始化函数
check_stocks_initialize()
# 股票筛选排序初始化函数
check_stocks_sort_initialize()
# 出场初始化函数
sell_initialize()
# 入场初始化函数
buy_initialize()
# 风控初始化函数
risk_management_initialize()
# 关闭提示
log.set_level('order', 'info')
# 运行函数
run_daily(sell_every_day,'open') #卖出未卖出成功的股票
run_daily(risk_management, 'every_bar') #风险控制
run_daily(check_stocks, 'open') #选股
run_daily(trade, 'open') #交易
run_daily(selled_security_list_count, 'after_close') #卖出股票日期计数
## 股票筛选初始化函数
def check_stocks_initialize():
# 是否过滤停盘
g.filter_paused = True
# 是否过滤退市
g.filter_delisted = True
# 是否只有ST
g.only_st = False
# 是否过滤ST
g.filter_st = True
# 股票池
g.security_universe_index = ["000300.XSHG"]
g.security_universe_user_securities = []
# 行业列表
g.industry_list = ["801010","801020","801030","801040","801050","801080","801110","801120","801130","801140","801150","801160","801170","801180","801200","801210","801230","801710","801720","801730","801740","801750","801760","801770","801780","801790","801880","801890"]
# 概念列表
g.concept_list = []
## 股票筛选排序初始化函数
def check_stocks_sort_initialize():
# 总排序准则: desc-降序、asc-升序
g.check_out_lists_ascending = 'desc'
## 出场初始化函数
def sell_initialize():
# 设定是否卖出buy_lists中的股票
g.sell_will_buy = False
# 固定出仓的数量或者百分比
g.sell_by_amount = None
g.sell_by_percent = None
## 入场初始化函数
def buy_initialize():
# 是否可重复买入
g.filter_holded = False
# 委托类型
g.order_style_str = 'by_market_cap_percent'
g.order_style_value = 100
## 风控初始化函数
def risk_management_initialize():
# 策略风控信号
g.risk_management_signal = True
# 策略当日触发风控清仓信号
g.daily_risk_management = True
# 单只最大买入股数或金额
g.max_buy_value = None
g.max_buy_amount = None
## 卖出未卖出成功的股票
def sell_every_day(context):
g.open_sell_securities = list(set(g.open_sell_securities))
open_sell_securities = [s for s in context.portfolio.positions.keys() if s in g.open_sell_securities]
if len(open_sell_securities)>0:
for stock in open_sell_securities:
order_target_value(stock, 0)
g.open_sell_securities = [s for s in g.open_sell_securities if s in context.portfolio.positions.keys()]
return
## 风控
def risk_management(context):
### _风控函数筛选-开始 ###
security_stoploss(context,0.05,g.open_sell_securities)
portfolio_stoploss(context,0.05,g.open_sell_securities)
index_stoploss_sicha(context,60,g.open_sell_securities, '000300.XSHG')
### _风控函数筛选-结束 ###
return
## 股票筛选
def check_stocks(context):
if g.check_stocks_days%g.check_stocks_refresh_rate != 0:
# 计数器加一
g.check_stocks_days += 1
return
# 股票池赋值
g.check_out_lists = get_security_universe(context, g.security_universe_index, g.security_universe_user_securities)
# 行业过滤
g.check_out_lists = industry_filter(context, g.check_out_lists, g.industry_list)
# 概念过滤
g.check_out_lists = concept_filter(context, g.check_out_lists, g.concept_list)
# 过滤ST股票
g.check_out_lists = st_filter(context, g.check_out_lists)
# 过滤退市股票
g.check_out_lists = delisted_filter(context, g.check_out_lists)
# 财务筛选
g.check_out_lists = financial_statements_filter(context, g.check_out_lists)
# 行情筛选
g.check_out_lists = situation_filter(context, g.check_out_lists)
# 技术指标筛选
g.check_out_lists = technical_indicators_filter(context, g.check_out_lists)
# 形态指标筛选函数
g.check_out_lists = pattern_recognition_filter(context, g.check_out_lists)
# 其他筛选函数
g.check_out_lists = other_func_filter(context, g.check_out_lists)
# 排序
input_dict = get_check_stocks_sort_input_dict()
g.check_out_lists = check_stocks_sort(context,g.check_out_lists,input_dict,g.check_out_lists_ascending)
# 计数器归一
g.check_stocks_days = 1
return
## 交易函数
def trade(context):
# 初始化买入列表
buy_lists = []
# 买入股票筛选
if g.buy_trade_days%g.buy_refresh_rate == 0:
# 获取 buy_lists 列表
buy_lists = g.check_out_lists
# 过滤ST股票
buy_lists = st_filter(context, buy_lists)
# 过滤停牌股票
buy_lists = paused_filter(context, buy_lists)
# 过滤退市股票
buy_lists = delisted_filter(context, buy_lists)
# 过滤涨停股票
buy_lists = high_limit_filter(context, buy_lists)
### _入场函数筛选-开始 ###
### _入场函数筛选-结束 ###
# 卖出操作
if g.sell_trade_days%g.sell_refresh_rate != 0:
# 计数器加一
g.sell_trade_days += 1
else:
# 卖出股票
sell(context, buy_lists)
# 计数器归一
g.sell_trade_days = 1
# 买入操作
if g.buy_trade_days%g.buy_refresh_rate != 0:
# 计数器加一
g.buy_trade_days += 1
else:
# 卖出股票
buy(context, buy_lists)
# 计数器归一
g.buy_trade_days = 1
## 卖出股票日期计数
def selled_security_list_count(context):
g.daily_risk_management = True
if len(g.selled_security_list)>0:
for stock in g.selled_security_list.keys():
g.selled_security_list[stock] += 1
################################## 选股函数群 ##################################
## 财务指标筛选函数
def financial_statements_filter(context, security_list):
### _财务指标筛选函数-开始 ###
security_list = financial_data_filter_dayu(security_list, indicator.gross_profit_margin, 40)
security_list = financial_data_filter_qujian(security_list, valuation.pe_ratio, (5,35))
security_list = financial_data_filter_dayu(security_list, indicator.roe, 10)
### _财务指标筛选函数-结束 ###
# 返回列表
return security_list
## 行情筛选函数
def situation_filter(context, security_list):
### _行情筛选函数-开始 ###
security_list = [security for security in security_list if situation_filter_dayu_ma(security, 'close', 60)]
### _行情筛选函数-结束 ###
# 返回列表
return security_list
## 技术指标筛选函数
def technical_indicators_filter(context, security_list):
### _技术指标筛选函数-开始 ###
security_list = [security for security in security_list if EMA_judge_duotou(security,10,60)]
### _技术指标筛选函数-结束 ###
# 返回列表
return security_list
## 形态指标筛选函数
def pattern_recognition_filter(context, security_list):
### _形态指标筛选函数-开始 ###
### _形态指标筛选函数-结束 ###
# 返回列表
return security_list
## 其他方式筛选函数
def other_func_filter(context, security_list):
### _其他方式筛选函数-开始 ###
### _其他方式筛选函数-结束 ###
# 返回列表
return security_list
# 获取选股排序的 input_dict
def get_check_stocks_sort_input_dict():
input_dict = {
indicator.roe:('desc',1),
valuation.pe_ratio:('asc',1),
}
# 返回结果
return input_dict
################################## 交易函数群 ##################################
# 交易函数 - 出场
def sell(context, buy_lists):
# 获取 sell_lists 列表
init_sl = context.portfolio.positions.keys()
sell_lists = context.portfolio.positions.keys()
# 判断是否卖出buy_lists中的股票
if not g.sell_will_buy:
sell_lists = [security for security in sell_lists if security not in buy_lists]
### _出场函数筛选-开始 ###
### _出场函数筛选-结束 ###
# 卖出股票
if len(sell_lists)>0:
for stock in sell_lists:
sell_by_amount_or_percent_or_none(context,stock, g.sell_by_amount, g.sell_by_percent, g.open_sell_securities)
# 获取卖出的股票, 并加入到 g.selled_security_list中
selled_security_list_dict(context,init_sl)
return
# 交易函数 - 入场
def buy(context, buy_lists):
# 风控信号判断
if not g.risk_management_signal:
return
# 判断当日是否触发风控清仓止损
if not g.daily_risk_management:
return
# 判断是否可重复买入
buy_lists = holded_filter(context,buy_lists)
# 获取最终的 buy_lists 列表
Num = g.max_hold_stocknum - len(context.portfolio.positions)
buy_lists = buy_lists[:Num]
# 买入股票
if len(buy_lists)>0:
# 分配资金
result = order_style(context,buy_lists,g.max_hold_stocknum, g.order_style_str, g.order_style_value)
for stock in buy_lists:
if len(context.portfolio.positions) < g.max_hold_stocknum:
# 获取资金
Cash = result[stock]
# 判断个股最大持仓比重
value = judge_security_max_proportion(context,stock,Cash,g.security_max_proportion)
# 判断单只最大买入股数或金额
amount = max_buy_value_or_amount(stock,value,g.max_buy_value,g.max_buy_amount)
# 下单
order(stock, amount, MarketOrderStyle())
return
################################### 公用函数群 ##################################
## 排序
def check_stocks_sort(context,security_list,input_dict,ascending='desc'):
if (len(security_list) == 0) or (len(input_dict) == 0):
return security_list
else:
# 生成 key 的 list
idk = list(input_dict.keys())
# 生成矩阵
a = pd.DataFrame()
for i in idk:
b = get_sort_dataframe(security_list, i, input_dict[i])
a = pd.concat([a,b],axis = 1)
# 生成 score 列
a['score'] = a.sum(1,False)
# 根据 score 排序
if ascending == 'asc':# 升序
if hasattr(a, 'sort'):
a = a.sort(['score'],ascending = True)
else:
a = a.sort_values(['score'],ascending = True)
elif ascending == 'desc':# 降序
if hasattr(a, 'sort'):
a = a.sort(['score'],ascending = False)
else:
a = a.sort_values(['score'],ascending = False)
# 返回结果
return list(a.index)
## 过滤同一标的继上次卖出N天不再买入
def filter_n_tradeday_not_buy(security, n=0):
try:
if (security in g.selled_security_list.keys()) and (g.selled_security_list[security]<n):
return False
return True
except:
return True
## 是否可重复买入
def holded_filter(context,security_list):
if not g.filter_holded:
security_list = [stock for stock in security_list if stock not in context.portfolio.positions.keys()]
# 返回结果
return security_list
## 卖出股票加入dict
def selled_security_list_dict(context,security_list):
selled_sl = [s for s in security_list if s not in context.portfolio.positions.keys()]
if len(selled_sl)>0:
for stock in selled_sl:
g.selled_security_list[stock] = 0
## 过滤停牌股票
def paused_filter(context, security_list):
if g.filter_paused:
current_data = get_current_data()
security_list = [stock for stock in security_list if not current_data[stock].paused]
# 返回结果
return security_list
## 过滤退市股票
def delisted_filter(context, security_list):
if g.filter_delisted:
current_data = get_current_data()
security_list = [stock for stock in security_list if not (('退' in current_data[stock].name) or ('*' in current_data[stock].name))]
# 返回结果
return security_list
## 过滤ST股票
def st_filter(context, security_list):
if g.only_st:
current_data = get_current_data()
security_list = [stock for stock in security_list if current_data[stock].is_st]
else:
if g.filter_st:
current_data = get_current_data()
security_list = [stock for stock in security_list if not current_data[stock].is_st]
# 返回结果
return security_list
# 过滤涨停股票
def high_limit_filter(context, security_list):
current_data = get_current_data()
security_list = [stock for stock in security_list if not (current_data[stock].day_open >= current_data[stock].high_limit)]
# 返回结果
return security_list
# 获取股票股票池
def get_security_universe(context, security_universe_index, security_universe_user_securities):
temp_index = []
for s in security_universe_index:
if s == 'all_a_securities':
temp_index += list(get_all_securities(['stock'], context.current_dt.date()).index)
else:
temp_index += get_index_stocks(s)
for x in security_universe_user_securities:
temp_index += x
return sorted(list(set(temp_index)))
# 行业过滤
def industry_filter(context, security_list, industry_list):
if len(industry_list) == 0:
# 返回股票列表
return security_list
else:
securities = []
for s in industry_list:
temp_securities = get_industry_stocks(s)
securities += temp_securities
security_list = [stock for stock in security_list if stock in securities]
# 返回股票列表
return security_list
# 概念过滤
def concept_filter(context, security_list, concept_list):
if len(concept_list) == 0:
return security_list
else:
securities = []
for s in concept_list:
temp_securities = get_concept_stocks(s)
securities += temp_securities
security_list = [stock for stock in security_list if stock in securities]
# 返回股票列表
return security_list
#自定义函数