This repository has been archived by the owner on Jan 30, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbibliographie.bib
330 lines (301 loc) · 16.1 KB
/
bibliographie.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
@article{williams_gradient-based_1995,
title = {Gradient-based learning algorithms for recurrent networks and their computational complexity},
url = {http://books.google.com/books?hl=en&lr=&id=B71nu3LDpREC&oi=fnd&pg=PA433&dq=%22we+consider+algorithms+for+training+recurrent+networks+to+perform%22+%22desired+output+is+a+time-varying+sequence.+More+generally,+both%22+%22than+fixed,+they+can+form+delay+line+structures+when+necessary+while%22+&ots=KjzFQzAdUY&sig=YxIXy3hL_OPH1FwpOrq1BWgE60I},
urldate = {2016-09-21},
journal = {Back-propagation: Theory, architectures and applications},
author = {Williams, Ronald J. and Zipser, David},
year = {1995},
pages = {433--486},
file = {Williams Zipser95RecNets.pdf:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/PPM29M4A/Williams Zipser95RecNets.pdf:application/pdf}
}
@misc{olah_calculus_2015,
type = {Blog {GitHub}},
title = {Calculus on {Computational} {Graphs}: {Backpropagation}},
url = {http://colah.github.io/posts/2015-08-Backprop/},
howpublished = {\url{http://colah.github.io/posts/2015-08-Backprop/}},
language = {English},
urldate = {2016-10-12},
journal = {Colas' blog},
author = {Olah, Christopher},
month = aug,
year = {2015},
file = {Calculus on Computational Graphs\: Backpropagation -- colah's blog:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/AD2AF8MC/2015-08-Backprop.html:text/html}
}
@article{cybenko_approximation_1989,
title = {Approximation by superpositions of a sigmoidal function},
volume = {2},
url = {http://link.springer.com/article/10.1007/BF02551274},
number = {4},
urldate = {2016-10-12},
journal = {Mathematics of control, signals and systems},
author = {Cybenko, George},
year = {1989},
pages = {303--314},
file = {Cybenko_MCSS.pdf:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/3JUCP44B/Cybenko_MCSS.pdf:application/pdf}
}
@misc{noauthor_chain_nodate,
title = {On chain rule, computational graphs, and backpropagation},
url = {http://outlace.com/Computational-Graph/},
howpublished = {\url{http://outlace.com/Computational-Graph/}},
language = {English},
journal = {Outlace}
}
@article{williams_learning_1989,
title = {A {Learning} {Algorithm} for {Continually} {Running} {Fully} {Recurrent} {Neural} {Networks}},
volume = {1},
issn = {0899-7667},
url = {http://dx.doi.org/10.1162/neco.1989.1.2.270},
doi = {10.1162/neco.1989.1.2.270},
number = {2},
journal = {Neural Comput.},
author = {Williams, Ronald J. and Zipser, David},
month = jun,
year = {1989},
pages = {270--280},
file = {WilliamsZipser.pdf:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/RT3JN9IE/WilliamsZipser.pdf:application/pdf}
}
@inproceedings{lecun_efficient_1998,
title = {Efficient {BackProp}},
booktitle = {Neural {Networks}: {Tricks} of the trade},
publisher = {Springer},
author = {LeCun, Y. and Bottou, L. and Orr, G. and Muller, K.},
editor = {Orr, G. and K, Muller},
year = {1998},
file = {lecun-98b[1].pdf:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/C2PHUXPF/lecun-98b[1].pdf:application/pdf}
}
@article{smith_learning_1991,
title = {Learning {Sequential} {Structure} with the {Real}-time {Recurrent} {Learning} {Algorithm}},
volume = {1},
issn = {0129-0657},
url = {http://dx.doi.org/10.1142/S0129065789000037},
doi = {10.1142/S0129065789000037},
number = {2},
journal = {Int. J. Neural Syst.},
author = {Smith, Anthony W. and Zipser, David},
month = sep,
year = {1991},
pages = {125--131},
file = {SmithZipster1989.pdf:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/ATKBNZCE/SmithZipster1989.pdf:application/pdf}
}
@article{hochreiter_long_1997,
title = {Long {Short}-{Term} {Memory}},
volume = {9},
issn = {0899-7667},
url = {http://dx.doi.org/10.1162/neco.1997.9.8.1735},
doi = {10.1162/neco.1997.9.8.1735},
number = {8},
journal = {Neural Comput.},
author = {Hochreiter, Sepp and Schmidhuber, Jürgen},
month = nov,
year = {1997},
pages = {1735--1780},
file = {Bobby_paper1.pdf:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/ENBRT9U6/Bobby_paper1.pdf:application/pdf}
}
@unpublished{goodfellow_deep_2016,
title = {Deep {Learning}},
url = {http://www.deeplearningbook.org},
howpublished = {\url{http://www.deeplearningbook.org}},
abstract = {The Deep Learning textbook is a resource intended to help students and practitioners enter the field of machine learning in general and deep learning in particular. The online version of the book is now complete and will remain available online for free.},
author = {Goodfellow, Ian and Bengio, Yoshua and Courville, Aaron},
year = {2016},
note = {Book in preparation for MIT Press},
file = {Deep Learning:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/GCXXQXRU/www.deeplearningbook.org.html:text/html}
}
@book{abu-mostafa_learning_2012,
address = {S.l.},
title = {Learning from data: a short course},
isbn = {978-1-60049-006-4},
shorttitle = {Learning from data},
language = {eng},
publisher = {AMLbook.com},
author = {Abu-Mostafa, Yaser S. and Magdon-Ismail, Malik and Lin, Hsuan-Tien},
year = {2012},
note = {OCLC: 808441289},
file = {Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin-Learning From Data_ A short course-AMLBook.com (2012).pdf:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/NIHN29BI/Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin-Learning From Data_ A short course-AMLBook.com (2012).pdf:application/pdf}
}
@misc{olah_understanding_nodate,
title = {Understanding {LSTM} {Networks} -- colah's blog},
url = {http://colah.github.io/posts/2015-08-Understanding-LSTMs/},
howpublished = {\url{http://colah.github.io/posts/2015-08-Understanding-LSTMs/}},
urldate = {2016-10-25},
author = {Olah, Christopher},
file = {Understanding LSTM Networks -- colah's blog:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/I63ZQVQB/2015-08-Understanding-LSTMs.html:text/html}
}
@article{graves_generating_2013,
title = {Generating sequences with recurrent neural networks},
url = {https://arxiv.org/abs/1308.0850},
howpublished = {\url{https://arxiv.org/abs/1308.0850}},
urldate = {2017-03-22},
journal = {arXiv preprint arXiv:1308.0850},
author = {Graves, Alex},
year = {2013},
file = {1308.0850.pdf:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/H93SR68Q/1308.0850.pdf:application/pdf}
}
@inproceedings{sutskever_generating_2011,
title = {Generating text with recurrent neural networks},
url = {http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Sutskever_524.pdf},
urldate = {2017-03-22},
booktitle = {Proceedings of the 28th {International} {Conference} on {Machine} {Learning} ({ICML}-11)},
author = {Sutskever, Ilya and Martens, James and Hinton, Geoffrey E.},
year = {2011},
pages = {1017--1024},
file = {LANG-RNN.pdf:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/S9TE8EAD/LANG-RNN.pdf:application/pdf}
}
@misc{sturm_infinite_2015,
title = {The {Infinite} {Irish} {Trad} {Session}},
url = {https://highnoongmt.wordpress.com/2015/08/07/the-infinite-irish-trad-session/},
howpublished = {\url{https://highnoongmt.wordpress.com/2015/08/07/the-infinite-irish-trad-session/}},
abstract = {My colleague João Felipe Santos and I found some summertime to create: The Infinite Irish Trad Session Our interests converged when we both took Andrej Karpathy’s RNN code and applied it to l…},
urldate = {2017-03-22},
journal = {High Noon GMT},
author = {Sturm, Bob L.},
month = aug,
year = {2015},
file = {Snapshot:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/24DRF4T5/the-infinite-irish-trad-session.html:text/html}
}
@misc{karpathy_unreasonable_2015,
title = {The {Unreasonable} {Effectiveness} of {Recurrent} {Neural} {Networks}},
url = {http://karpathy.github.io/2015/05/21/rnn-effectiveness/},
howpublished = {\url{http://karpathy.github.io/2015/05/21/rnn-effectiveness/}},
urldate = {2017-03-22},
author = {Karpathy, Andrej},
month = may,
year = {2015},
file = {The Unreasonable Effectiveness of Recurrent Neural Networks:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/FQA99V6A/rnn-effectiveness.html:text/html}
}
@misc{araoz_training_2016,
title = {Training a {Recurrent} {Neural} {Network} to {Compose} {Music}},
url = {https://maraoz.com/2016/02/02/abc-rnn/},
howpublished = {\url{https://maraoz.com/2016/02/02/abc-rnn/}},
urldate = {2017-03-22},
author = {Araoz, Manuel},
month = feb,
year = {2016},
file = {Training a Recurrent Neural Network to Compose Music:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/77NEFRVT/abc-rnn.html:text/html}
}
@article{sturm_music_2016,
title = {Music transcription modelling and composition using deep learning},
url = {https://arxiv.org/abs/1604.08723},
howpublished = {\url{https://arxiv.org/abs/1604.08723}},
urldate = {2017-03-22},
journal = {arXiv preprint arXiv:1604.08723},
author = {Sturm, Bob L. and Santos, João Felipe and Ben-Tal, Oded and Korshunova, Iryna},
year = {2016},
file = {1604.08723.pdf:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/WV3F6E49/1604.08723.pdf:application/pdf}
}
@inproceedings{eck_finding_2002,
title = {Finding temporal structure in music: {Blues} improvisation with {LSTM} recurrent networks},
shorttitle = {Finding temporal structure in music},
url = {http://ieeexplore.ieee.org/abstract/document/1030094/},
urldate = {2017-03-22},
booktitle = {Neural {Networks} for {Signal} {Processing}, 2002. {Proceedings} of the 2002 12th {IEEE} {Workshop} on},
publisher = {IEEE},
author = {Eck, Douglas and Schmidhuber, Juergen},
year = {2002},
pages = {747--756},
file = {IDSIA-07-02.pdf:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/9G3J956E/IDSIA-07-02.pdf:application/pdf}
}
@misc{johnson_composing_2015,
title = {Composing {Music} {With} {Recurrent} {Neural} {Networks}},
url = {http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/},
howpublished = {\url{http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/}},
abstract = {(Update: A paper based on this work has been accepted at EvoMusArt 2017! See here for more details.) It’s hard not to be blown away by the surprising power of neural networks these days. With enough training, so called “deep neural networks”, with many nodes and hidden layers, can do impressively well on modeling and predicting all kinds of data. (If you don’t know what I’m talking about, I recommend reading about recurrent character-level language models, Google Deep Dream, and neural Turing machines. Very cool stuff!) Now seems like as good a time as ever to experiment with what a neural network can do. For a while now, I’ve been floating around vague ideas about writing a program to compose music. My original idea was based on a fractal decomposition of time and some sort of repetition mechanism, but after reading more about neural networks, I decided that they would be a better fit. So a few weeks ago, I got to work designing my network. And after training for a while, I am happy to report remarkable success! Here’s a taste of things to come:},
urldate = {2017-03-22},
journal = {hexahedria},
author = {Johnson, Daniel},
month = aug,
year = {2015},
file = {Snapshot:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/NVEHIEJU/composing-music-with-recurrent-neural-networks.html:text/html}
}
@article{jaques_sequence_nodate,
title = {Sequence {Tutor}: {Conservative} {Fine}-{Tuning} of {Sequence} {Generation} {Models} with {KL}-control},
shorttitle = {Sequence {Tutor}},
url = {https://pdfs.semanticscholar.org/e963/7bbe3c34cbebd0869574e86692403735e12e.pdf},
urldate = {2017-03-22},
author = {Jaques, Natasha and Gu, Shixiang and Bahdanau, Dzmitry and Lobato, José Miguel Hernández and Turner, Richard E. and Eck, Douglas},
file = {1611.02796.pdf:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/8CSGFWHV/1611.02796.pdf:application/pdf}
}
@misc{kim_deep_2016,
title = {Deep learning driven jazz generation},
url = {https://jisungk.github.io/deepjazz/},
howpublished = {\url{https://jisungk.github.io/deepjazz/}},
abstract = {deepjazz uses Keras and Theano, two deep learning libraries, to generate jazz music. Specifically, it builds a two-layer LSTM, learning from the given MIDI file. It uses deep learning, the AI tech that powers Google's AlphaGo and IBM's Watson, to make music -- something that's considered as deeply human.},
urldate = {2017-03-22},
journal = {deepjazz.io},
author = {Kim, Ji-Sung},
year = {2016},
file = {Snapshot:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/SSQPTD6U/deepjazz.io.html:text/html}
}
@misc{liang_bachbot_2016,
title = {The {BachBot} {Challenge}: {Man} vs {Machine}},
shorttitle = {The {BachBot} {Challenge}},
url = {http://bachbot.com},
howpublished = {\url{http://bachbot.com}},
abstract = {Can you tell the real Bach apart from a creative artificial intelligence?},
urldate = {2017-03-22},
author = {Liang, Feynman and Gotham, Mark and Tomczak, Marcin and Johnson, Matthew and Shotton, Jamie},
year = {2016},
file = {Snapshot:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/KF4C586J/bachbot.com.html:text/html}
}
@article{nayebi_gruv:_2015,
title = {{GRUV}: {Algorithmic} {Music} {Generation} using {Recurrent} {Neural} {Networks}},
shorttitle = {{GRUV}},
url = {http://cs224d.stanford.edu/reports/NayebiAran.pdf},
urldate = {2017-03-22},
author = {Nayebi, Aran and Vitelli, Matt},
year = {2015},
file = {NayebiAran.pdf:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/EKT6VCEE/NayebiAran.pdf:application/pdf}
}
@misc{wheel_robomozart:_2016,
title = {{RoboMozart}: {Generating} music using {LSTM} networks trained per-tick on a {MIDI} collection with short music segments as input.},
author = {Wheel, Jospeh},
month = jun,
year = {2016},
file = {f1647680373.pdf:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/AWKJRAAP/f1647680373.pdf:application/pdf}
}
@misc{noauthor_ai:_2016,
title = {{AI}•{ON}: {Artificial} {Intelligence} {Open} {Network} - {Music} generation based on surprise optimization},
url = {http://ai-on.org/projects/music-generation-based-on-surprise-optimization.html},
howpublished = {\url{http://ai-on.org/projects/music-generation-based-on-surprise-optimization.html}},
urldate = {2017-03-22},
month = oct,
year = {2016},
file = {AI•ON\: Artificial Intelligence Open Network - Music generation based on surprise optimization:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/MHEUDWRJ/music-generation-based-on-surprise-optimization.html:text/html}
}
@misc{johnston_using_2016,
title = {Using {LSTM} {Recurrent} {Neural} {Networks} for {Music} {Generation}},
author = {Johnston, Luke},
month = feb,
year = {2016},
file = {LSTM_RNNs_for_Music_Generation.pdf:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/GCP7IDTF/LSTM_RNNs_for_Music_Generation.pdf:application/pdf}
}
@article{chu_song_2016,
title = {Song {From} {PI}: {A} {Musically} {Plausible} {Network} for {Pop} {Music} {Generation}},
shorttitle = {Song {From} {PI}},
url = {https://arxiv.org/abs/1611.03477},
howpublished = {\url{https://arxiv.org/abs/1611.03477}},
urldate = {2017-03-22},
journal = {arXiv preprint arXiv:1611.03477},
author = {Chu, Hang and Urtasun, Raquel and Fidler, Sanja},
year = {2016},
file = {1611.03477v1.pdf:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/ZK2HVC5M/1611.03477v1.pdf:application/pdf}
}
@article{van_den_oord_wavenet:_2016,
title = {Wavenet: {A} generative model for raw audio},
shorttitle = {Wavenet},
url = {https://pdfs.semanticscholar.org/df04/02517a7338ae28bc54acaac400de6b456a46.pdf},
urldate = {2017-03-23},
journal = {CoRR abs/1609.03499},
author = {van den Oord, Aäron and Dieleman, Sander and Zen, Heiga and Simonyan, Karen and Vinyals, Oriol and Graves, Alex and Kalchbrenner, Nal and Senior, Andrew and Kavukcuoglu, Koray},
year = {2016},
file = {1609.03499.pdf:/home/pierre/.mozilla/firefox/eb7pgjd4.default/zotero/storage/GRSNNM8X/1609.03499.pdf:application/pdf}
}
@misc{vasanth_kalingeri_music_2016,
title = {Music {Generation} {Using} {Deep} {Learning}},
url = {https://arxiv.org/pdf/1612.04928.pdf},
howpublished = {\url{https://arxiv.org/pdf/1612.04928.pdf}},
language = {English},
author = {Vasanth Kalingeri, Srikanth Grandhe},
month = dec,
year = {2016}
}