-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
40 lines (34 loc) · 1.4 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import pandas as pd
import gradio as gr
import torch
from torch.nn import functional as F
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
device="cpu"
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
cat_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
cap_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning").to(device)
def predict(image, max_length=64, num_beams=4):
image = image.convert('RGB')
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
caption_ids = cap_model.generate(image, max_length=max_length)[0]
caption_text = clean_text(cat_tokenizer.decode(caption_ids))
return caption_text
input = gr.components.Image(label="Upload Image", type = 'pil')
caption = gr.components.Textbox(type="text", label="Captions")
examples = [f"e{i}.jpg" for i in range(1,7)]
title = "Image Caption"
description = "Made by: Swapnil Tripathi"
interface = gr.Interface(
fn=predict,
description=description,
inputs=input,
theme=gr.themes.Default(
primary_hue=gr.themes.colors.orange,
secondary_hue=gr.themes.colors.slate
),
outputs=caption,
examples=examples,
title=title,
)
interface.launch(debug=True, share=True)