-
Notifications
You must be signed in to change notification settings - Fork 1
/
ButtonBox.ino
202 lines (171 loc) · 5.96 KB
/
ButtonBox.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// Uses Ben Buxton's rotary encoder work!: https://github.com/buxtronix/arduino/tree/master/libraries/Rotary
// Grab all libraries that we need.
#include <Keypad.h>
#include <Joystick.h>
#include <Wire.h>
#include <Adafruit_MCP23017.h>
// Allows us to use 'mcp' for calls to the MCP23017 we are using.
Adafruit_MCP23017 mcp;
// Some definitions: We're using 5 rotaries (with buttons), and 24 stand-alone buttons.
#define ENABLE_PULLUPS
#define NUMROTARIES 5
#define NUMBUTTONS 24
// We have a button matrix to support the 24 buttons: 5 rows, 5 columns
#define NUMROWS 5
#define NUMCOLS 5
// This is a matrix that maps our buttons out for use in the keypad later.
byte buttons[NUMROWS][NUMCOLS] = {
{0,1,2,3,4},
{5,6,7,8,9},
{10,11,12,13,14},
{15,16,17,18,19},
{20,21,22,23}
};
// we have two pins + gnd for each rotary encoder.
// 1. CW rotation is one button (cwFn)
// 2. CCW rotation is another button (ccwFn), and
// 3. the button press itself is a third (btnFn) for each encoder.
struct rotariesdef {
byte pin1;
byte pin2;
int ccwFn;
int cwFn;
volatile unsigned char state;
int btnPin;
int btnFn;
int btnState;
};
// These are mcp pins, since the rotary encoders are all on the MCP.
// Each row represents one rotary encoder
rotariesdef rotaries[NUMROTARIES] {
{7,6,29,30,0,9,24,0},
{5,4,31,32,0,10,25,0},
{3,2,33,34,0,11,26,0},
{1,0,35,36,0,12,27,0},
{15,14,37,38,0,13,28,0}
};
// We need to be able to hold the previous state.
int rotaryBtnState = 0;
#define DIR_CCW 0x10
#define DIR_CW 0x20
#define R_START 0x0
#define R_CW_FINAL 0x1
#define R_CW_BEGIN 0x2
#define R_CW_NEXT 0x3
#define R_CCW_BEGIN 0x4
#define R_CCW_FINAL 0x5
#define R_CCW_NEXT 0x6
const unsigned char ttable[7][4] = {
// R_START
{R_START, R_CW_BEGIN, R_CCW_BEGIN, R_START},
// R_CW_FINAL
{R_CW_NEXT, R_START, R_CW_FINAL, R_START | DIR_CW},
// R_CW_BEGIN
{R_CW_NEXT, R_CW_BEGIN, R_START, R_START},
// R_CW_NEXT
{R_CW_NEXT, R_CW_BEGIN, R_CW_FINAL, R_START},
// R_CCW_BEGIN
{R_CCW_NEXT, R_START, R_CCW_BEGIN, R_START},
// R_CCW_FINAL
{R_CCW_NEXT, R_CCW_FINAL, R_START, R_START | DIR_CCW},
// R_CCW_NEXT
{R_CCW_NEXT, R_CCW_FINAL, R_CCW_BEGIN, R_START},
};
// The pins that are used for the rows
byte rowPins[NUMROWS] = {4,5,6,8,9};
// The pins that are used for the columns
byte colPins[NUMCOLS] = {10,14,15,16,18};
Keypad buttbx = Keypad( makeKeymap(buttons), rowPins, colPins, NUMROWS, NUMCOLS);
Joystick_ Joystick(JOYSTICK_DEFAULT_REPORT_ID,
JOYSTICK_TYPE_GAMEPAD, 39, 0,
false, false, false, false, false, false,
false, false, false, false, false);
String msg;
void setup() {
// Initiate the mcp and joystick packages, and run rotary_init().
mcp.begin();
Joystick.begin();
rotary_init();
}
void loop() {
CheckAllEncoders();
CheckAllButtons();
}
void CheckAllButtons(void) {
if (buttbx.getKeys())
{
for (int i=0; i<LIST_MAX; i++)
{
if ( buttbx.key[i].stateChanged )
{
switch (buttbx.key[i].kstate) {
case PRESSED:
msg = " pressed.";
case HOLD:
Joystick.setButton(buttbx.key[i].kchar, 1);
msg = " held.";
break;
case RELEASED:
msg = " released.";
case IDLE:
Joystick.setButton(buttbx.key[i].kchar, 0);
break;
}
}
}
}
}
void rotary_init() {
for (int i=0;i<NUMROTARIES;i++) {
// We initialise all pins
mcp.pinMode(rotaries[i].pin1, INPUT);
mcp.pinMode(rotaries[i].pin2, INPUT);
mcp.pinMode(rotaries[i].btnPin, INPUT);
// And set them to be pullups
mcp.digitalWrite(rotaries[i].pin1, HIGH);
mcp.digitalWrite(rotaries[i].pin2, HIGH);
mcp.digitalWrite(rotaries[i].btnPin, HIGH);
}
}
unsigned char rotary_process(int _i) {
unsigned char pinstate = (mcp.digitalRead(rotaries[_i].pin2) << 1) | mcp.digitalRead(rotaries[_i].pin1);
rotaries[_i].state = ttable[rotaries[_i].state & 0xf][pinstate];
return (rotaries[_i].state & 0x30);
}
void CheckAllEncoders(void) {
for (int i=0;i<NUMROTARIES;i++) {
unsigned char result = rotary_process(i);
// If the result was that the rotary encoder turned counter-clockwise, we:
// 1. set the ccwFn button to on (1)
// 2. wait 50ms, and
// 3. and then turn it off (0).
// If the rotation was clockwise, do the same thing for cwFn.
if (result == DIR_CCW) {
Joystick.setButton(rotaries[i].ccwFn, 1); delay(50); Joystick.setButton(rotaries[i].ccwFn, 0);
};
if (result == DIR_CW) {
Joystick.setButton(rotaries[i].cwFn, 1); delay(50); Joystick.setButton(rotaries[i].cwFn, 0);
}
// If the encoder did not turn, we should check if the rotary button was pressed.
else {
rotaryBtnState = mcp.digitalRead(rotaries[i].btnPin);
// If the button has been pressed, the rotaryBtnState will be LOW.
while (rotaryBtnState == LOW) {
// If the rotaries[i] value is 0, it means that it's a new press, so we need to set it to on (1).
if (rotaries[i].btnState == 0) {
Joystick.setButton(rotaries[i].btnFn, 1);
rotaries[i].btnState = 1;
}
// Now we read the button state again, which allows the button to be continuously checked for being pressed.
// This means that it will only read this encoder button and nothing else meanwhile it is pressed, though!
rotaryBtnState = mcp.digitalRead(rotaries[i].btnPin);
}
// If the button has been released, and the btnState value was set to 1,
// it means it was released and we need to do something: turn it off (set to 0).
if (rotaryBtnState == HIGH && rotaries[i].btnState == 1) {
Joystick.setButton(rotaries[i].btnChar, 0);
rotaries[i].btnState = 0;
}
}
}
}