-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsatromo_publish.py
1008 lines (794 loc) · 39.1 KB
/
satromo_publish.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
from pydrive.auth import GoogleAuth
from pydrive.drive import GoogleDrive
from oauth2client.service_account import ServiceAccountCredentials
import csv
import json
import os
import ee
import configuration as config
from collections import OrderedDict
import subprocess
import glob
import platform
import re
import requests
import time
from datetime import datetime
from collections import defaultdict
from google.cloud import storage
from main_functions import main_thumbnails, main_publish_stac_fsdi, main_extract_warnregions
# Set the CPL_DEBUG environment variable to enable verbose output
# os.environ["CPL_DEBUG"] = "ON"
def determine_run_type():
"""
Determines the run type based on the existence of the SECRET on the local machine file. And determine platform
If the file `config.GDRIVE_SECRETS` exists, sets the run type to 2 (DEV) and prints a corresponding message.
Otherwise, sets the run type to 1 (PROD) and prints a corresponding message.
"""
global run_type
global GDRIVE_SOURCE
global S3_DESTINATION
global GDRIVE_MOUNT
global os_name
# Get the operating system name
os_name = platform.system()
# Set SOURCE , DESTINATION and MOUNTPOINTS
if os.path.exists(config.GDRIVE_SECRETS):
run_type = 2
print("\nType 2 run PUBLISHER: We are on a local machine")
GDRIVE_SOURCE = config.GDRIVE_SOURCE_DEV
GDRIVE_MOUNT = config.GDRIVE_MOUNT_DEV
S3_DESTINATION = config.S3_DESTINATION_DEV
else:
run_type = 1
print("\nType 1 run PUBLISHER: We are on Github")
GDRIVE_SOURCE = config.GDRIVE_SOURCE_INT
GDRIVE_MOUNT = config.GDRIVE_MOUNT_INT
S3_DESTINATION = config.S3_DESTINATION_INT
def initialize_gee_and_drive():
"""
Initialize Google Earth Engine (GEE), RCLONE and Google Drive authentication.
This function authenticates GEE and Google Drive either using a service account key file
or GitHub secrets depending on the run type.
Returns:
None
"""
scopes = ["https://www.googleapis.com/auth/drive"]
if run_type == 2:
# Initialize GEE and Google Drive using service account key file
# Authenticate using the service account key file
with open(config.GDRIVE_SECRETS, "r") as f:
service_account_key = json.load(f)
# Authenticate Google Drive
gauth = GoogleAuth()
gauth.service_account_file = config.GDRIVE_SECRETS
gauth.service_account_email = service_account_key["client_email"]
gauth.credentials = ServiceAccountCredentials.from_json_keyfile_name(
gauth.service_account_file, scopes=scopes
)
rclone_config_file = config.RCLONE_SECRETS
google_secret_file = config.GDRIVE_SECRETS
else:
# Initialize GEE and Google Drive using GitHub secrets
# Authenticate using the provided secrets from GitHub Actions
gauth = GoogleAuth()
google_client_secret = json.loads(
os.environ.get('GOOGLE_CLIENT_SECRET'))
gauth.service_account_email = google_client_secret["client_email"]
gauth.service_account_file = "keyfile.json"
with open(gauth.service_account_file, "w") as f:
f.write(json.dumps(google_client_secret))
gauth.credentials = ServiceAccountCredentials.from_json_keyfile_name(
gauth.service_account_file, scopes=scopes
)
# Write rclone config to a file
rclone_config = os.environ.get('RCONF_SECRET')
rclone_config_file = "rclone.conf"
with open(rclone_config_file, "w") as f:
f.write(rclone_config)
# Write GDRIVE Secrest config to a file
google_secret = os.environ.get('GOOGLE_CLIENT_SECRET')
google_secret_file = "keyfile.json"
with open(google_secret_file, "w") as f:
f.write(google_secret)
# Create mountpoint GDRIVE
command = ["mkdir", GDRIVE_MOUNT]
print(command)
result = subprocess.run(command, check=True)
if config.GDRIVE_TYPE != "GCS":
# GDRIVE Mount
command = ["rclone", "mount", "--config", "rclone.conf", # "--allow-other",
os.path.join(GDRIVE_SOURCE), GDRIVE_MOUNT, "--vfs-cache-mode", "full"]
else:
# GCS Mount
command = ["rclone", "mount", "--config", "rclone.conf",
GDRIVE_SOURCE+config.GCLOUD_BUCKET, GDRIVE_MOUNT, "--gcs-bucket-policy-only"]
# add path on Bucket to drive
#GDRIVE_MOUNT=os.path.join(GDRIVE_MOUNT,config.GCLOUD_BUCKET)
print(command)
subprocess.Popen(command)
# Create the Google Drive client
global drive
drive = GoogleDrive(gauth)
# Create the Google Drive client
global storage_client
storage_client = storage.Client.from_service_account_json(
gauth.service_account_file)
# Initialize EE
credentials = ee.ServiceAccountCredentials(
gauth.service_account_email, gauth.service_account_file
)
ee.Initialize(credentials)
# Test EE initialization
image = ee.Image("NASA/NASADEM_HGT/001")
title = image.get("title").getInfo()
if title == "NASADEM: NASA NASADEM Digital Elevation 30m":
print("GEE initialization successful")
else:
print("GEE initialization FAILED")
def initialize_drive():
"""
Re-Initialize Google Drive since it times out.
This function authenticates Google Drive either using a service account key file
or GitHub secrets depending on the run type.
Returns:
None
"""
scopes = ["https://www.googleapis.com/auth/drive"]
if run_type == 2:
# Initialize Google Drive using service account key file
# Authenticate using the service account key file
with open(config.GDRIVE_SECRETS, "r") as f:
service_account_key = json.load(f)
# Authenticate Google Drive
gauth = GoogleAuth()
gauth.service_account_file = config.GDRIVE_SECRETS
gauth.service_account_email = service_account_key["client_email"]
gauth.credentials = ServiceAccountCredentials.from_json_keyfile_name(
gauth.service_account_file, scopes=scopes
)
else:
# Initialize Google Drive using GitHub secrets
# Authenticate using the provided secrets from GitHub Actions
gauth = GoogleAuth()
google_client_secret = json.loads(
os.environ.get('GOOGLE_CLIENT_SECRET'))
gauth.service_account_email = google_client_secret["client_email"]
gauth.service_account_file = "keyfile.json"
with open(gauth.service_account_file, "w") as f:
f.write(json.dumps(google_client_secret))
gauth.credentials = ServiceAccountCredentials.from_json_keyfile_name(
gauth.service_account_file, scopes=scopes
)
# Create the Google Drive client
global drive
drive = GoogleDrive(gauth)
def download_and_delete_file(file):
"""
DEV/local machine only Download a file from Google Drive and delete it afterwards.
Parameters:
file (GoogleDriveFile): Google Drive file object to download and delete.
Returns:
None
"""
# Download the file to local machine
file.GetContentFile(os.path.join(config.RESULTS, file["title"]))
print(f"File {file['title']} downloaded.")
# Delete the file
file.Delete()
print(f"File {file['title']} DELETED on Google Drive.")
def move_files_with_rclone(source, destination, move=True):
"""
#TO DO : is obsolote, we need to delete file, no backup needed on INT S3 location
Move files using the rclone command.
Parameters:
source (str): Source path of the files to be moved.
destination (str): Destination path to move the files to.
Returns:
None
"""
# Run rclone command to move files
# See hint https://forum.rclone.org/t/s3-rclone-v-1-52-0-or-after-permission-denied/21961/2
# Uncomment below for backup
# ..........................
# if run_type == 2:
# rclone = os.path.join("secrets", "rclone")
# rclone_conf = os.path.join("secrets", "rclone.conf")
# else:
# rclone = "rclone"
# rclone_conf = "rclone.conf"
# if move == True:
# command = [rclone, "move", "--config", rclone_conf, "--s3-no-check-bucket",
# source, destination]
# else:
# command = [rclone, "copy", "--config", rclone_conf, "--s3-no-check-bucket",
# source, destination]
# subprocess.run(command, check=True)
# if move == True:
# print("SUCCESS: moved " + source + " to " + destination)
# else:
# print("SUCCESS: copied " + source + " to " + destination)
# Comment below for backup
# ..........................
if move == True:
os.remove(source)
print("SUCCESS: deleted " + source)
else:
print("keeping file:"+source)
def merge_files_with_gdal_warp(source):
"""
Merge with GDAL
Parameters:
source (str): Source filename .
Returns:
None
"""
# check local disk disk space
if os_name == "Windows":
print("This is a Windows operating system, make sure you have enough disk space.")
else:
command = ["df", "-h"]
print(command)
result = subprocess.run(command, check=True,
capture_output=True, text=True)
print(result)
# Get the list of all quadrant files matching the pattern
file_list = sorted(glob.glob(os.path.join(
GDRIVE_MOUNT, source+"*.tif")))
# under Windows Replace double backslashes with single backslashes in the file list
if os_name == "Windows":
file_list = [filename.replace('\\\\', '\\') for filename in file_list]
# Write the file names to _list.txt
with open(source+"_list.txt", "w") as file:
file.writelines([f"{filename}\n" for filename in file_list])
# run gdal vrt
command = ["gdalbuildvrt",
"-input_file_list", source+"_list.txt", source+".vrt",
"--config", "GDAL_CACHEMAX", "9999",
"--config", "GDAL_NUM_THREADS", "ALL_CPUS",
"--config", "CPL_VSIL_USE_TEMP_FILE_FOR_RANDOM_WRITE", "YES",
# "-vrtnodata", str(config.NODATA),
# "-srcnodata", str(config.NODATA),
]
# print(command)
result = subprocess.run(command, check=True,
capture_output=True, text=True)
# print(result)
# run gdal translate
command = ["gdalwarp",
# rename to source+"_merged.tif" when doing reprojection afterwards
source+".vrt", source+".tif",
"-of", "COG",
"-cutline", config.BUFFER,
"-dstnodata", str(config.NODATA),
# "-srcnodata", str(config.NODATA),
# "-co", "NUM_THREADS=ALL_CPUS",
"-co", "BIGTIFF=YES",
# "--config", "GDAL_CACHEMAX", "9999",
# "--config", "GDAL_NUM_THREADS", "ALL_CPUS",
"--config", "CPL_VSIL_USE_TEMP_FILE_FOR_RANDOM_WRITE", "YES",
# otherwise use compress=LZW
# https://kokoalberti.com/articles/geotiff-compression-optimization-guide/ and https://digital-geography.com/geotiff-compression-comparison/
"-co", "COMPRESS=DEFLATE",
"-co", "PREDICTOR=2",
# "-r", "near", #enforce nearest with cutline
]
# print(command)
result = subprocess.run(command, check=True,
capture_output=True, text=True)
# print(result)
# For Debugging uncomment below
# print("Standard Output:")
# print(result.stdout)
# print("Standard Error:")
# print(result.stderr)
print("SUCCESS: merged " + source+".tif")
return (source+".tif")
def extract_value_from_csv(filename, search_string, search_col, col_result):
try:
with open(filename, "r") as file:
reader = csv.DictReader(file)
for row in reader:
if row[search_col] == search_string:
return row[col_result]
print(
f"Entry not found for '{search_string}' in column '{search_col}'")
except FileNotFoundError:
print("File not found.")
return None
def write_update_metadata(filename, filemeta):
# Use a regular expression pattern to find everything after the date
match = re.search(r"(.*?\d{4}-\d{2}-\d{2}T\d{6})_(.*)", filename)
if match:
# Everything before and including the date
file_prefix = match.group(1)
# Everything after the date
band_name = match.group(2)
band_name = band_name.upper()
# Construct the file path
file_path = os.path.join(file_prefix + "_metadata.json")
# Initialize metadata as an empty dictionary
metadata = {}
# Check if the file exists
if os.path.exists(file_path):
# If the file exists, open it and load the JSON data
with open(file_path, 'r') as f:
metadata = json.load(f)
# Check if 'm-10' is in metadata
if band_name not in metadata:
metadata[band_name] = {}
# Copy the data
metadata[band_name]['BANDS'] = filemeta['GEE_BANDS']
metadata[band_name]['PROPERTIES'] = filemeta['SWISSTOPO']
metadata[band_name]['SOURCE_COLLECTION'] = filemeta['GEE_ID'] if 'GEE_ID' in filemeta else filemeta['GEE_PROPERTIES']['collection']
metadata[band_name]['SOURCE_COLLECTION_PROPERTIES'] = filemeta['GEE_PROPERTIES']
metadata[band_name]['GEE_VERSION'] = filemeta['GEE_VERSION'] if 'GEE_VERSION' in filemeta else None
for key in filemeta:
# Check if "*WARNREGIONS*" is part of the key
if "WARNREGIONS" in key:
metadata[key] = {}
# Copy the value associated with the matching key to metadata under the key "WARNREGIONS"
metadata[key] = filemeta[key]
# Write the updated data back to the JSON file
with open(file_path, 'w') as json_file:
json.dump(metadata, json_file)
# upload consolidated META JSON file to FSDI STAC
main_publish_stac_fsdi.publish_to_stac(
file_path, metadata[band_name]['PROPERTIES']['ITEM'], metadata[band_name]['PROPERTIES']['PRODUCT'], metadata[band_name]['PROPERTIES']['GEOCATID'])
# Create a current version and upload file to FSDI STAC, only if the latest item on STAC is newer or of the same age
collection = metadata[band_name]['PROPERTIES']['PRODUCT']
result = extract_and_compare_datetime_from_url(config.STAC_FSDI_SCHEME+"://"+config.STAC_FSDI_HOSTNAME+config.STAC_FSDI_API +
"collections/"+collection+"/items/"+collection.replace("ch.swisstopo.", ""), metadata[band_name]['PROPERTIES']['ITEM'])
if result == True:
file_merged_current = re.sub(
r'\d{4}-\d{2}-\d{2}T\d{6}', 'current', file_path)
# Rename the file
os.rename(file_path, file_merged_current)
# Publish current dataset to stac
main_publish_stac_fsdi.publish_to_stac(
file_merged_current, metadata[band_name]['PROPERTIES']['ITEM'], metadata[band_name]['PROPERTIES']['PRODUCT'], metadata[band_name]['PROPERTIES']['GEOCATID'], current=True)
# Rename the file back
os.rename(file_merged_current, file_path)
def delete_gdrive(file):
# Attempt to delete the file with retries, since gdrive once in a while returns a error 500
for attempt in range(3): # Try up to 3 times
try:
file.Delete()
print(f"File {file['title']} DELETED on Google Drive.")
break # Exit the loop if the deletion was successful
except Exception as e:
print(
f"Attempt {attempt + 1} to delete file {file['title']} failed with error: {e}")
if attempt < 2: # If not the last attempt, wait before retrying
time.sleep(8) # Wait for 5 seconds before retrying
else:
print(
f"Failed to delete file {file['title']} after 3 attempts.")
def clean_up_gdrive(filename):
"""
Deletes files in Google Drive that match the given filename.Writes Metadata of processing results
Args:
filename (str): The name of the file to be deleted.
Returns:
None
"""
# Find the file in Google Drive by its name
# file_list = drive.ListFile({
# "q": "title contains '"+filename+"' and trashed=false"
# }).GetList()
# The approach above does not work if there are a lot of files
# TODO GCS HERE:: List forl all files
if config.GDRIVE_TYPE != "GCS":
filtered_files = drive.ListFile({"q": "trashed=false"}).GetList()
file_list = [
file for file in filtered_files if filename in file['title']]
else:
# TODO GCS HERE:: List forl all files
# initialize_bucket(bucket_name)
bucket = storage_client.bucket(config.GCLOUD_BUCKET)
blobs = bucket.list_blobs()
file_list = []
for blob in blobs:
if filename in blob.name:
file_list.append(blob.name)
# Check if the file is found
if len(file_list) > 0:
# Iterate through the files and delete them
for file in file_list:
# Get the current Task id
if config.GDRIVE_TYPE != "GCS":
file_on_drive = file['title']
else:
file_on_drive = file
file_task_id = extract_value_from_csv(
config.GEE_RUNNING_TASKS, file_on_drive.replace(".tif", ""), "Filename", "Task ID")
# Check task status
file_task_status = ee.data.getTaskStatus(file_task_id)[0]
# Get the product and item
file_product, file_item = extract_product_and_item(
file_task_status['description'])
# Delete file on gdrive with muliple attempt
if config.GDRIVE_TYPE != "GCS":
delete_gdrive(file)
else:
# Get the blob (file) object
blob = bucket.blob(file)
# Delete the blob
blob.delete()
print(f"File {file} deleted from bucket.")
# Add DATA GEE PROCESSING info to stats
write_file(file_task_status, config.GEE_COMPLETED_TASKS)
# Remove the line from the RUNNING tasks file
delete_line_in_file(config.GEE_RUNNING_TASKS, file_task_id)
# read metadata from json
with open(os.path.join(
config.PROCESSING_DIR, filename + "_metadata.json"), 'r') as f:
existing_data = json.load(f)
# Add prefix and convert keys to uppercase
file_task_status = {
f"POSTPROCESSING_{key.upper()}": value for key, value in file_task_status.items()}
# Add file_task_status to the "SWISSTOPO" list
existing_data["SWISSTOPO"].update(file_task_status)
# Write the updated data back to the JSON file
with open(os.path.join(
config.PROCESSING_DIR, filename + "_metadata.json"), 'w') as json_file:
json.dump(existing_data, json_file)
# Write and upload consolidated META JSON file to FSDI STAC
write_update_metadata(filename, existing_data)
# Copy consolidated META JSON file to SATROMO INT
move_files_with_rclone(os.path.join(
existing_data['SWISSTOPO']['PRODUCT']+"_mosaic_"+existing_data['SWISSTOPO']['ITEM']+"_metadata.json"), os.path.join(S3_DESTINATION, file_product, existing_data['SWISSTOPO']['ITEM']), move=False)
# delete JSON Description of asset
if os.path.exists(os.path.join(
config.PROCESSING_DIR, filename+"_metadata.json")):
os.remove(os.path.join(config.PROCESSING_DIR,
filename+"_metadata.json"))
# Update Status in RUNNING tasks file
replace_running_with_complete(
config.LAST_PRODUCT_UPDATES, file_product)
# Clean up GDAL temporary files
# VRT file, Pattern for .vrt files
vrt_pattern = f"*{existing_data['SWISSTOPO']['ITEM']}*.vrt"
vrt_files = glob.glob(vrt_pattern)
[os.remove(file_path)
for file_path in vrt_files if os.path.exists(file_path)]
# Pattern for _list.txt files
list_txt_pattern = f"*{existing_data['SWISSTOPO']['ITEM']}*_list.txt"
list_files = glob.glob(list_txt_pattern)
[os.remove(file_path)
for file_path in list_files if os.path.exists(file_path)]
else:
# No files found
print("No files found in GDRIVE to delete and move for "+filename)
return
def write_file(input_dict, output_file):
"""
Write a dictionary to a CSV file. If the file exists, the data is appended
to it. If the file does not exist, a new file is created with a header.
Parameters:
input_dict (dict): Dictionary to be written to file.
output_file (str): Path of the output file.
Returns:
None
"""
append_or_write = "a" if os.path.isfile(output_file) else "w"
with open(output_file, append_or_write, encoding="utf-8", newline='') as f:
dict_writer = csv.DictWriter(f, fieldnames=list(input_dict.keys()),
delimiter=",", quotechar='"',
lineterminator="\n")
if append_or_write == "w":
dict_writer.writeheader()
dict_writer.writerow(input_dict)
return
def delete_line_in_file(filepath, stringtoremove):
"""
Delete lines containing a specific string from a file.
Parameters:
filepath (str): Path of the file to modify.
stringtoremove (str): String to search for and remove from the file.
Returns:
None
"""
with open(filepath, "r+") as file:
lines = file.readlines()
file.seek(0)
file.truncate()
for line in lines:
if stringtoremove not in line.strip() and line.strip():
file.write(line)
elif not line.strip():
file.write("\n")
def extract_product_and_item(task_description):
"""
Extract the product and item information from a task description.
Parameters:
task_description (str): Description of the task containing product and item information.
Returns:
tuple: A tuple containing the extracted product and item information.
"""
product = task_description.split("_mosaic_")[0]
item = task_description
return product, item
def replace_running_with_complete(input_file, item):
"""
Replace 'RUNNING' with 'complete' in the specific item line of an input file.
Parameters:
input_file (str): Path to the input file.
item (str): Item to identify the line to be modified.
Returns:
None
"""
output_lines = []
with open(input_file, 'r') as f:
for line in f:
if line.startswith(item):
line = line.replace('RUNNING', 'complete')
output_lines.append(line)
with open(input_file, 'w') as f:
f.writelines(output_lines)
def extract_and_compare_datetime_from_url(url, iso_string):
"""
Extracts the datetime value from a given STAC ITEM JSON URL and compares it with a provided ISO string.
Args:
url (str): The URL to fetch JSON data from.
iso_string (str): The ISO 8601 datetime string for comparison.
Returns:
bool: True if the extracted datetime value is on the same day or newer than the provided ISO string; False otherwise.
"""
response = requests.get(url) # Fetch the JSON data from the URL
if response.status_code == 200:
data = response.json() # Parse the JSON data
# Extract the "datetime" value
datetime_value = data['properties']['datetime']
# Parse the datetime value from the JSON response
extracted_datetime = datetime.strptime(
datetime_value, '%Y-%m-%dT%H:%M:%SZ')
# Parse the ISO string
iso_datetime = datetime.strptime(iso_string[:10], '%Y-%m-%d')
# Extract dates from both datetime objects
extracted_date = extracted_datetime.date()
iso_date = iso_datetime.date()
# Compare the dates
return extracted_date <= iso_date
else:
print("Failed to fetch data from the URL:", response.status_code)
return False
def check_substrings_presence(file_merged, substring_to_check, additional_substrings):
"""
Check if the main substring and at least one of the additional substrings are present in the file_merged string.
Args:
- file_merged (str): The string to check.
- substring_to_check (str): The main substring to check for.
- additional_substrings (list of str): List of additional substrings to check for.
Returns:
- bool: True if the main substring and at least one of the additional substrings are present, False otherwise.
"""
# Check if the main substring is present in the string
if substring_to_check in file_merged:
# Check if any of the additional substrings are also present
additional_substring_found = any(
substring in file_merged for substring in additional_substrings)
return additional_substring_found
else:
return False
def check_asset_size(filename):
"""
Checks the asset size of the product defined in the configuration
Args:
- filename (str): The filename containing the product name to match.
Returns:
- asset_size (int or None): The needed asset size if a matching product is found,
otherwise None.
"""
# Iterate through all items in the config file
for product_name in dir(config):
# Get the product dictionary
product_info = getattr(config, product_name)
# Check if it's a dictionary and has the 'product_name' key
if isinstance(product_info, dict) and 'product_name' in product_info:
if product_info['product_name'] in filename:
# Return the expected asset size
return product_info['asset_size']
print("No matching product found in the configuration.")
return None # Return None if no matching product is found
if __name__ == "__main__":
# Test if we are on a local machine or if we are on Github
determine_run_type()
# Authenticate with GEE and GDRIVE
initialize_gee_and_drive()
# empty temp files on GDrive
if config.GDRIVE_TYPE != "GCS":
file_list = drive.ListFile({'q': "trashed=true"}).GetList()
for file in file_list:
# Delete file on gdrive with muliple attempt
delete_gdrive(file)
# print('GDRIVE TRASH: Deleted file: %s' % file['title'])
# Read the status file
with open(config.GEE_RUNNING_TASKS, "r") as f:
lines = f.readlines()
# Get the unique filename
unique_filenames = set()
for line in lines[1:]: # Start from the second line
_, filename = line.strip().split(',')
# Take the part before "quadrant"
filename = filename.split('quadrant')[0]
unique_filenames.add(filename.strip())
unique_filenames = list(unique_filenames)
# Step 1: Group by date
grouped_files = defaultdict(list)
for filename in unique_filenames:
# Extract the date part
date_part = filename.split('_mosaic_')[1].split('T')[0]
# Group the filenames by date
grouped_files[date_part].append(filename)
# Step 2: Create the unique_filename_day list
unique_filename_day = [sorted(day_list) for day_list in grouped_files.values()]
# Step 3: Loop through unique_filename_day, Start the processing and remove groups from unique_filename
for group in unique_filename_day:
print("Date:",
group[0].split('_mosaic_')[1].split('T')[0], "checking export status")
# Check if each quandrant is complete then process
# Iterate over unique filenames
# Set asset counter to 0
all_assets = 0
for filename in group:
# Keep track of completion status
all_completed = True
# You need to change this if we have more than 4 quadrants
for quadrant_num in range(1, 5):
# Construct the filename with the quadrant
full_filename = filename + "quadrant" + str(quadrant_num)
# Find the corresponding task ID in the lines list
task_id = None
for line in lines[1:]:
if full_filename in line:
task_id = line.strip().split(",")[0]
break
if task_id:
# Check task status
task_status = ee.data.getTaskStatus(task_id)[0]
if task_status["state"] != "COMPLETED":
# Task is not completed
all_completed = False
print(f"{full_filename} - {task_status['state']}")
# Check overall completion status of files
if all_completed:
all_assets = all_assets + 1
# Check overall completion status of all assets for date.
asset_size = check_asset_size(filename)
if all_assets == asset_size:
print(" ... checking status of asset: "+filename)
print(" --> ",
group[0].split('_mosaic_')[1].split('T')[0], "all assets exported and READY ...")
for filename in group:
print(filename+" starting processing ... ")
# read metadata from json
with open(os.path.join(
config.PROCESSING_DIR, (filename+"_metadata.json")), 'r') as f:
metadata = json.load(f)
# Set the buffer based on orbit or use Switzerland wide buffer
if 'GEE_PROPERTIES' in metadata and 'SENSING_ORBIT_NUMBER' in metadata['GEE_PROPERTIES']:
config.BUFFER = os.path.join("assets", "ch_buffer_5000m_2056_" + str(
metadata['GEE_PROPERTIES']['SENSING_ORBIT_NUMBER']) + ".shp")
else:
config.BUFFER = os.path.join(
"assets", "ch_buffer_5000m.shp")
# merge files
file_merged = merge_files_with_gdal_warp(filename)
# check if there is a need to create thumbnail , if yes create it
thumbnail = main_thumbnails.create_thumbnail(
file_merged, metadata['SWISSTOPO']['PRODUCT'])
# upload file to FSDI STAC
main_publish_stac_fsdi.publish_to_stac(
file_merged, metadata['SWISSTOPO']['ITEM'], metadata['SWISSTOPO']['PRODUCT'], metadata['SWISSTOPO']['GEOCATID'])
# Warnregions:
# swisseo-vhi warnregions: create
# Check if we deal with VHI Vegetation or Forest files
if check_substrings_presence(file_merged, metadata['SWISSTOPO']['PRODUCT'], ['vegetation-10m.tif', 'forest-10m.tif']) is True:
print("Extracting warnregions stats...")
warnregionfilename = metadata['SWISSTOPO']['PRODUCT']+"_"+metadata['SWISSTOPO']['ITEM'] + \
"_" + \
file_merged[file_merged.rfind(
"_") + 1:file_merged.rfind("-")]+"-warnregions"
# Extracting warnregions
main_extract_warnregions.export(file_merged, config.WARNREGIONS, warnregionfilename,
metadata['SWISSTOPO']['DATEITEMGENERATION']+"T23:59:59Z", config.PRODUCT_VHI['missing_data'])
# Pushing CSV , GEOJSON and PARQUET
warnformats = [".csv", ".geojson", ".parquet"] #
for format in warnformats:
main_publish_stac_fsdi.publish_to_stac(
warnregionfilename+format, metadata['SWISSTOPO']['ITEM'], metadata['SWISSTOPO']['PRODUCT'], metadata['SWISSTOPO']['GEOCATID'])
# Define the new metadata entry
new_entry_key = (file_merged[file_merged.rfind(
"_") + 1:file_merged.rfind("-")] + "-warnregions" + format.replace(".", "-")).upper()
new_entry_value = {
"PRODUCT": metadata['SWISSTOPO']['PRODUCT'],
"ITEM": metadata['SWISSTOPO']['ITEM'],
"ASSET": warnregionfilename + format,
"SOURCE": file_merged,
"format": format,
"regionId": "RegionID",
"vhiMean": "VHI Mean Region",
"availabilityPercentage": "percentage of available pixels with information within region"
}
# Update the metadata dictionary with the new entry
metadata[new_entry_key] = new_entry_value
# Write the updated metadata back to the JSON file
with open(os.path.join(
config.PROCESSING_DIR, file_merged.replace(".tif", "_metadata.json")), 'w') as f:
json.dump(metadata, f)
# Create a current version and upload file to FSDI STAC, only if the latest item on STAC is newer or of the same age
collection = metadata['SWISSTOPO']['PRODUCT']
result = extract_and_compare_datetime_from_url(config.STAC_FSDI_SCHEME+"://"+config.STAC_FSDI_HOSTNAME+config.STAC_FSDI_API +
"collections/"+collection+"/items/"+collection.replace("ch.swisstopo.", ""), metadata['SWISSTOPO']['ITEM'])
if result == True:
print("Newest dataset detected: updating CURRENT")
file_merged_current = re.sub(
r'\d{4}-\d{2}-\d{2}T\d{6}', 'current', file_merged)
# Rename the file
os.rename(file_merged, file_merged_current)
# Publish current dataset to stac
main_publish_stac_fsdi.publish_to_stac(
file_merged_current, metadata['SWISSTOPO']['ITEM'], metadata['SWISSTOPO']['PRODUCT'], metadata['SWISSTOPO']['GEOCATID'], current=True)
# Publish current thumbnail if a thumbnail is required
if thumbnail is not False:
main_publish_stac_fsdi.publish_to_stac(
thumbnail, metadata['SWISSTOPO']['ITEM'], metadata['SWISSTOPO']['PRODUCT'], metadata['SWISSTOPO']['GEOCATID'], current=True)
# Rename the file back
os.rename(file_merged_current, file_merged)
# Pushing Warnregions CSV , GEOJSON and PARQUET
if check_substrings_presence(file_merged, metadata['SWISSTOPO']['PRODUCT'], ['vegetation-10m.tif', 'forest-10m.tif']) is True:
# create filepath
warnregionfilename_current = re.sub(
r'\d{4}-\d{2}-\d{2}T\d{6}', 'current', warnregionfilename)
for format in warnformats:
# Rename the file
os.rename(warnregionfilename+format,
warnregionfilename_current+format)
# Publish current dataset to stac
main_publish_stac_fsdi.publish_to_stac(
warnregionfilename_current+format, metadata['SWISSTOPO']['ITEM'], metadata['SWISSTOPO']['PRODUCT'], metadata['SWISSTOPO']['GEOCATID'], current=True)
# Rename the file back
os.rename(warnregionfilename_current +
format, warnregionfilename+format)
# move file to INT STAC : in case reproejction is done here: move file_reprojected
move_files_with_rclone(
file_merged, os.path.join(S3_DESTINATION, metadata['SWISSTOPO']['PRODUCT'], metadata['SWISSTOPO']['ITEM']))
# Pushing Warnregions CSV , GEOJSON and PARQUET
if check_substrings_presence(file_merged, metadata['SWISSTOPO']['PRODUCT'], ['vegetation-10m.tif', 'forest-10m.tif']) is True:
for format in warnformats:
move_files_with_rclone(
warnregionfilename+format, os.path.join(S3_DESTINATION, metadata['SWISSTOPO']['PRODUCT'], metadata['SWISSTOPO']['ITEM']))
# Upload and move thumbnail if a thumbnail is required
if thumbnail is not False:
main_publish_stac_fsdi.publish_to_stac(
thumbnail, metadata['SWISSTOPO']['ITEM'], metadata['SWISSTOPO']['PRODUCT'], metadata['SWISSTOPO']['GEOCATID'])
move_files_with_rclone(
thumbnail, os.path.join(S3_DESTINATION, metadata['SWISSTOPO']['PRODUCT'], metadata['SWISSTOPO']['ITEM']))
# clean up GDrive and local drive, move JSON to STAC
# Re -Test if we are on a local machine or if we are on Github: Redo, since GDRIVE might have a timeout
determine_run_type()
# Authenticate with GDRIVE
initialize_drive()
# os.remove(file_merged
clean_up_gdrive(filename)
# Remove each filename from the original group and list
unique_filenames.remove(filename)
else:
print(" ... checking status of asset: "+filename)
# delete consolidated META file
[os.remove(file) for file in glob.glob("*_metadata.json")]
# Last step
if run_type == 1:
# Remove the key file so It wont be commited
os.remove("keyfile.json")
os.remove("rclone.conf")