-
-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathglobal.R
373 lines (331 loc) · 14.3 KB
/
global.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
library(shiny)
library(shinydashboard)
library(data.table)
library(DT)
library(ggplot2)
library(shinycssloaders)
library(shinydashboardPlus)
library(shinyWidgets)
library(leaflet)
library(rjson)
library(htmltools)
library(leaflet.minicharts)
library(echarts4r)
library(sparkline)
library(shinyBS)
library(shiny.i18n)
library(countup)
library(incidence)
library(EpiEstim)
source(file = "01_Settings/Path.R", local = T, encoding = "UTF-8")
source(file = "02_Utils/Functions.R", local = T, encoding = "UTF-8")
source(file = "02_Utils/mapNameMap.R", local = T, encoding = "UTF-8")
source(file = "02_Utils/ConfirmedPyramidData.R", local = T, encoding = "UTF-8")
source(file = paste0(COMPONENT_PATH, "Notification.R"), local = T, encoding = "UTF-8")
source(file = paste0(PAGE_PATH, "Main/Utils/ValueBox.R"), local = T, encoding = "UTF-8")
source(file = paste0(COMPONENT_PATH, "/UserListItemWrapper.R"), local = T, encoding = "UTF-8")
source(file = paste0(COMPONENT_PATH, "/Main/NewsList.ui.R"), local = T, encoding = "UTF-8")
source(file = paste0(COMPONENT_PATH, "/Main/SymptomsProgression.ui.R"), local = T, encoding = "UTF-8")
source(file = paste0(COMPONENT_PATH, "/Main/ComfirmedPyramid.ui.R"), local = T, encoding = "UTF-8")
source(file = paste0(COMPONENT_PATH, "/Main/Tendency.ui.R"), local = T, encoding = "UTF-8")
# envSetting <- "dev"
envSetting <- "production"
# ====
# データの読み込み
# ====
i18n <- suppressWarnings(Translator$new(translation_json_path = "www/lang/translation.json"))
i18n$set_translation_language("ja")
languageSetting <- ifelse(length(i18n$translation_language) == 0, "ja", i18n$translation_language)
if(length(i18n$translation_language) == 0) {
e_common(font_family = "HiraMinProN-W3")
}
# マップのソースの読み込み
japanMap <- jsonlite::read_json(paste0(DATA_PATH, "Echarts/japan.json"))
# TODO ここで変換せず、ローカルで変換すべき
japanMap$features <- japanMap$features %>%
purrr::map(function(x){
x$properties$name <- convertRegionName(x$properties$nam_ja, languageSetting)
return(x)
})
byDate <- fread(paste0(DATA_PATH, "byDate.csv"), header = T)
byDate[is.na(byDate)] <- 0
byDate$date <- lapply(byDate[, 1], function(x) {
as.Date(as.character(x), format = "%Y%m%d")
})
# マップ用データ読み込み
mapData <- fread(paste0(DATA_PATH, "result.map.csv"), header = T)
# Value data for display
global_value_for_display <- fread(paste0(DATA_PATH, "/data_for_display.csv"))
# 死亡データ
death <- fread(paste0(DATA_PATH, "death.csv"))
death[is.na(death)] <- 0
# 行動歴データ
activity <- rjson::fromJSON(file = paste0(DATA_PATH, "caseMap.json"), unexpected.escape = "error")
# 経度緯度データ
position <- fread(paste0(DATA_PATH, "position.csv"))
# 厚労省の都道府県まとめデータ
detailByRegion <- fread(paste0(DATA_PATH, "detailByRegion.csv"))
detailByRegion[, 都道府県名 := gsub("県|府", "", 都道府県名)]
detailByRegion[, 都道府県名 := gsub("東京都", "東京", 都道府県名)]
detailByRegion[, 日付 := as.Date(as.character(日付), "%Y%m%d")]
# アプリ情報
# statics <- fromJSON(file = 'https://stg.covid-2019.live/ncov-static/stats.json',
# unexpected.escape = 'error')
# 国内の日報
domesticDailyReport <- fread(paste0(DATA_PATH, "domesticDailyReport.csv"))
domesticDailyReport$date <- as.Date(as.character(domesticDailyReport$date), "%Y%m%d")
setnafill(domesticDailyReport, type = "locf")
# チャーター便の日報
flightDailyReport <- fread(paste0(DATA_PATH, "flightDailyReport.csv"))
flightDailyReport$date <- as.Date(as.character(flightDailyReport$date), "%Y%m%d")
setnafill(flightDailyReport, type = "locf")
# 空港検疫の日報
airportDailyReport <- fread(paste0(DATA_PATH, "airportDailyReport.csv"))
airportDailyReport$date <- as.Date(as.character(airportDailyReport$date), "%Y%m%d")
setnafill(airportDailyReport, type = "locf")
# クルーズ船の日報
shipDailyReport <- fread(paste0(DATA_PATH, "shipDailyReport.csv"))
shipDailyReport$date <- as.Date(as.character(shipDailyReport$date), "%Y%m%d")
setnafill(shipDailyReport, type = "locf")
# 2020-04-22時点から、退院者数と死亡者数が速報値と確定値に分かれているので、それの対応
confirmingData <- fread(paste0(DATA_PATH, "confirmingData.csv"))
confirmingData$date <- as.Date(as.character(confirmingData$date), "%Y%m%d")
# 日報まとめ
dailyReport <- fread(paste0(DATA_PATH, "resultDailyReport.csv"))
dailyReport$date <- as.Date(dailyReport$date, "%Y-%m-%d")
setnafill(dailyReport, type = "locf")
# コールセンター
callCenterDailyReport <- fread(paste0(DATA_PATH, "MHLW/callCenter.csv"))
callCenterDailyReport$date <- as.Date(as.character(callCenterDailyReport$date), "%Y%m%d")
pcrByRegion <- fread(file = paste0(DATA_PATH, "MHLW/pcrByRegion.csv"))
pcrByRegion[, 日付 := as.Date(as.character(日付), "%Y%m%d")]
# 文言データ
lang <- fread(paste0(DATA_PATH, "lang.csv"))
langCode <- "ja"
# TODO 言語切り替え機能
# languageSet <- c('ja', 'cn')
# names(languageSet) <- c(lang[[langCode]][25], lang[[langCode]][26])
mhlwSummaryPath <- paste0(DATA_PATH, "/MHLW/summary.csv")
mhlwSummary <- fread(file = mhlwSummaryPath)
mhlwSummary$日付 <- as.Date(as.character(mhlwSummary$日付), "%Y%m%d")
mhlwSummary <- mhlwSummary[order(都道府県名, 日付)]
setnafill(mhlwSummary, type = "locf", cols = c("陽性者", "退院者", "検査人数"))
# 都道府県マスターデータ
prefecture_master <- fread(paste0(DATA_PATH, "Signate/prefMaster.csv"))
vaccine_by_region <- fread(paste0(DATA_PATH, "MHLW/vaccineByRegion.csv"))
# ====総数基礎集計====
# 確認
TOTAL_DOMESITC <- sum(byDate[, c(2:48)]) # 日本国内事例のPCR陽性数(クルーズ船関連者除く)
TOTAL_OFFICER <- sum(byDate$検疫職員) # クルーズ船関連の職員のPCR陽性数
TOTAL_FLIGHT <- sum(byDate$チャーター便) # チャーター便のPCR陽性数
TOTAL_WITHIN <- TOTAL_DOMESITC + TOTAL_OFFICER + TOTAL_FLIGHT # 日本国内事例のPCR陽性数
TOTAL_SHIP <- sum(byDate$クルーズ船) # クルーズ船のPCR陽性数
TOTAL_JAPAN <- TOTAL_WITHIN + TOTAL_SHIP + sum(byDate$伊客船) # 日本領土内のPCR陽性数
CONFIRMED_PIE_DATA <- data.table(
category = c(
lang[[langCode]][4], # 国内事例
lang[[langCode]][35], # クルーズ船
lang[[langCode]][36] # チャーター便
),
value = c(TOTAL_DOMESITC + TOTAL_OFFICER, TOTAL_SHIP, TOTAL_FLIGHT)
)
# 退院
DISCHARGE_WITHIN <- getFinalAndDiff(domesticDailyReport$discharge)
DISCHARGE_FLIGHT <- getFinalAndDiff(flightDailyReport$discharge)
DISCHARGE_SHIP <- getFinalAndDiff(shipDailyReport$discharge)
DISCHARGE_AIRPORT <- getFinalAndDiff(airportDailyReport$discharge)
CURED_PIE_DATA <- data.table(
category = c(
lang[[langCode]][4], # 国内事例
lang[[langCode]][36], # チャーター便 (無症状)
lang[[langCode]][35], # クルーズ船
"空港検疫"
),
value = c(
DISCHARGE_WITHIN$final,
DISCHARGE_FLIGHT$final,
DISCHARGE_SHIP$final,
DISCHARGE_AIRPORT$final
),
diff = c(
DISCHARGE_WITHIN$diff,
DISCHARGE_FLIGHT$diff,
DISCHARGE_SHIP$diff,
DISCHARGE_AIRPORT$diff
)
)
DISCHARGE_TOTAL <- sum(CURED_PIE_DATA$value)
DISCHARGE_TOTAL_NO_SHIP <- DISCHARGE_TOTAL - DISCHARGE_SHIP$final
DISCHARGE_DIFF <- sum(CURED_PIE_DATA$diff)
DISCHARGE_DIFF_NO_SHIP <- DISCHARGE_DIFF - DISCHARGE_SHIP$diff
# 死亡
DEATH_DOMESITC <- sum(death[, c(2:48)]) # 日本国内事例の死亡数(クルーズ船関連者除く)
DEATH_OFFICER <- sum(death[]$検疫職員) # クルーズ船関連の職員の死亡数
DEATH_FLIGHT <- sum(death$チャーター便) # チャーター便の死亡数
DEATH_WITHIN <- DEATH_DOMESITC + DEATH_OFFICER + DEATH_FLIGHT # 日本国内事例の死亡数
DEATH_SHIP <- sum(death$クルーズ船) # クルーズ船の死亡数
DEATH_JAPAN <- DEATH_WITHIN + DEATH_SHIP # 日本領土内の死亡数
DEATH_PIE_DATA <- data.table(
category = c(
lang[[langCode]][4], # 国内事例
lang[[langCode]][35], # クルーズ船
lang[[langCode]][36] # チャーター便
),
value = c(DEATH_DOMESITC + DEATH_OFFICER, DEATH_SHIP, DEATH_FLIGHT)
)
# ====本日のデータ====
# 確認
byDateToday <- byDate[nrow(byDate),] # 本日の差分データセット
todayConfirmed <- unlist(as.list(byDateToday[, 2:ncol(byDateToday)]))
HAS_TODAY_CONFIRMED <- todayConfirmed[todayConfirmed > 0] # 本日変化がある都道府県分類
deathToday <- death[nrow(byDate),] # 本日の差分データセット
todayDeath <- unlist(as.list(deathToday[, 2:ncol(deathToday)]))
HAS_TODAY_DEATH <- todayDeath[todayDeath > 0] # 本日変化がある都道府県分類
# ====前日比べの基礎集計(差分)====
# 確認
TOTAL_DOMESITC_DIFF <- sum(byDateToday[, c(2:48)]) # 日本国内事例のPCR陽性数(クルーズ船関連者除く)
TOTAL_OFFICER_DIFF <- sum(byDateToday[]$検疫職員) # クルーズ船関連の職員のPCR陽性数
TOTAL_FLIGHT_DIFF <- sum(byDateToday$チャーター便) # チャーター便のPCR陽性数
TOTAL_WITHIN_DIFF <- TOTAL_DOMESITC_DIFF + TOTAL_OFFICER_DIFF + TOTAL_FLIGHT_DIFF # 日本国内事例のPCR陽性数
TOTAL_SHIP_DIFF <- sum(byDateToday$クルーズ船) # クルーズ船のPCR陽性数
TOTAL_JAPAN_DIFF <- TOTAL_WITHIN_DIFF + TOTAL_SHIP_DIFF + sum(byDateToday[, 52]) # 日本領土内のPCR陽性数
# 死亡
DEATH_DOMESITC_DIFF <- sum(deathToday[, c(2:48)]) # 日本国内事例のPCR陽性数(クルーズ船関連者除く)
DEATH_OFFICER_DIFF <- sum(deathToday[]$検疫職員) # クルーズ船関連の職員のPCR陽性数
DEATH_FLIGHT_DIFF <- sum(deathToday$チャーター便) # チャーター便のPCR陽性数
DEATH_WITHIN_DIFF <- DEATH_DOMESITC_DIFF + DEATH_OFFICER_DIFF + DEATH_FLIGHT_DIFF # 日本国内事例のPCR陽性数
DEATH_SHIP_DIFF <- sum(deathToday$クルーズ船) # クルーズ船のPCR陽性数
DEATH_JAPAN_DIFF <- DEATH_WITHIN_DIFF + DEATH_SHIP_DIFF # 日本領土内のPCR陽性数
# 地域選択に表示する項目名
regionName <- colSums(byDate[, 2:ncol(byDate)])
regionNamePref <- regionName[1:47]
regionNamePref <- sort(regionNamePref[regionNamePref > 0], decreasing = T)
regionNamePrefName <- paste0(sapply(names(regionNamePref), i18n$t), " (", regionNamePref, ")")
regionNameOther <- regionName[48:length(regionName)]
regionNameOtherName <- paste0(convertRegionName(names(regionNameOther), languageSetting), " (", regionNameOther, ")")
regionName <- c("都道府県", names(regionNameOther), names(regionNamePref))
defaultSelectedRegionName <- regionName[1:3]
names(regionName) <- c(
paste0(i18n$t("都道府県合計"), " (", TOTAL_DOMESITC, ")"),
regionNameOtherName,
regionNamePrefName
)
regionName <- as.list(regionName)
news <- fread(paste0(DATA_PATH, "mhlw_houdou.csv"))
provinceCode <- fread(paste0(DATA_PATH, "prefectures.csv"))
provinceSelector <- provinceCode$id
provinceSelector <- as.list(provinceSelector)
names(provinceSelector) <- sapply(provinceCode$`name-ja`, i18n$t)
# 詳細データけんもねずみ
positiveDetail <- fread(paste0(DATA_PATH, "positiveDetail.csv"))
# 市レベルの感染者数
# confirmedCityTreemapData <- fread(paste0(DATA_PATH, "Kenmo/confirmedNumberByCity.", languageSetting, ".csv"))
# 詳細データ
detail <- fread(paste0(DATA_PATH, "detail.csv"),
colClasses = list(
numeric = c(1, 2),
factor = c(5, 6, 9:11)
)
)
detailColName <- colnames(detail)
detail[, comfirmedDay := as.Date(as.character(detail$comfirmedDay), format = "%Y%m%d")]
detail[, link := as.integer(detail$link)]
detailMerged <- merge(detail, news, by.x = "link", by.y = "id")
detailMerged[, link := paste0("<a href='", detailMerged$link.y, "'>", detailMerged$title, "</a>")]
detail <- detailMerged[, detailColName, with = F][order(id)]
# 詳細データのサマリー
detailSummary <- detail[, .(count = .N), by = .(gender, age)]
# 症状の進行テーブルを読み込む
processData <- fread(input = paste0(DATA_PATH, "resultProcessData.csv"))
# ====
# 定数設定
# ====
# Real-time感染数の更新時間
UPDATE_DATETIME <- file.info(paste0(DATA_PATH, "byDate.csv"))$mtime
latestUpdateDuration <- difftime(Sys.time(), UPDATE_DATETIME)
LATEST_UPDATE <- paste0(
round(latestUpdateDuration[[1]], 0),
convertUnit2Ja(latestUpdateDuration)
)
RECOVERED_FILE_UPDATE_DATETIME <- file.info(paste0(DATA_PATH, "recovered.csv"))$mtime
DEATH_FILE_UPDATE_DATETIME <- file.info(paste0(DATA_PATH, "death.csv"))$mtime
UPDATE_DATE <- as.Date(UPDATE_DATETIME)
DEATH_UPDATE_DATE <- as.Date(DEATH_FILE_UPDATE_DATETIME)
# TODO Vectorのネーミングなぜかうまくいかないのでとりあえずここに置く
showOption <- c("showShip", "showFlight")
names(showOption) <- c(lang[[langCode]][35], lang[[langCode]][36])
twitterUrl <- paste0(
"https://twitter.com/intent/tweet?text=新型コロナウイルス感染速報:国内の感染確認",
TOTAL_JAPAN,
"人(クルーズ船含む)、",
byDate$date[nrow(byDate)],
"の現時点で新たに",
TOTAL_JAPAN_DIFF,
"人が確認されました。&hashtags=",
"新型コロナウイルス,新型コロナウイルス速報",
"&url=https://covid-2019.live/"
)
lightRed <- "#F56954"
middleRed <- "#DD4B39"
darkRed <- "#B03C2D"
lightYellow <- "#F8BF76"
middleYellow <- "#F39C11"
darkYellow <- "#DB8B0A"
lightGreen <- "#00A65A"
middleGreen <- "#01A65A"
darkGreen <- "#088448"
superDarkGreen <- "#046938"
superDarkGreen2 <- "#023D20"
lightNavy <- "#5A6E82"
middelNavy <- "#001F3F"
darkNavy <- "#001934"
lightGrey <- "#F5F5F5"
lightBlue <- "#7BD6F5"
middleBlue <- "#00C0EF"
darkBlue <- "#00A7D0"
options(spinner.color = middleRed)
GLOBAL_VALUE <- reactiveValues(
vaccine = NULL,
signateDetail = NULL,
signateDetail.ageGenderData = fread(file = paste0(DATA_PATH, "Generated/genderAgeData.csv")),
signateLink = NULL,
signatePlace = fread(file = paste0(DATA_PATH, "resultSignatePlace.csv")),
ECMO = list(
ecmoUising = NULL,
ecmo = NULL,
artificialRespirators = NULL
),
Academic = list(
onset_to_confirmed_map = NULL
),
hokkaidoData = NULL,
hokkaidoDataUpdateTime = NULL,
hokkaidoPatients = NULL,
Aomori = list(
summary = NULL,
patient = NULL,
callCenter = NULL,
contact = NULL,
updateTime = NULL
),
Kanagawa = list(
summary = NULL,
updateTime = NULL
),
Fukuoka = list(
summary = NULL,
updateTime = NULL,
patients = NULL,
nodes = NULL,
edges = NULL,
call = NULL
),
World = list(
Summary = NULL,
SummaryTable = NULL
),
Google = list(
mobility = NULL,
table = NULL
)
)