-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
303 lines (256 loc) · 10.8 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
from __future__ import division
import torch
import torch.nn as nn
from utils.utils import build_targets
from collections import defaultdict
class Conv(nn.Module):
def __init__(self,inch,ch,stride=1,size=3,doBN = True):
super(Conv,self).__init__()
self.conv = nn.Conv2d(inch,ch,kernel_size=size,stride=stride,padding=size//2, bias=not doBN)
self.bn = nn.BatchNorm2d(ch)
self.relu = nn.LeakyReLU(0.1)
self.size = size
self.inch = inch
self.stride = stride
self.ch = ch
self.doBN = doBN
def forward(self, x):
x = self.conv(x)
if self.doBN:
x = self.bn(x)
return self.relu(x)
def getComp(self,W,H):
W = W // self.stride
H = H // self.stride
return self.size*self.size*W*H*self.inch*self.ch*2 + (W*H*self.ch*4 if self.doBN else 0), W, H
def getParams(self):
return self.ch*(self.inch*self.size*self.size + 4 if self.doBN else 1)
class YOLOLayer(nn.Module):
"""Detection layer"""
def __init__(self, anchors, num_classes, img_dim):
super(YOLOLayer, self).__init__()
self.anchors = anchors
self.num_anchors = len(anchors)
self.num_classes = num_classes
self.bbox_attrs = 5 #+ num_classes
self.image_dim = img_dim
self.ignore_thres = 0.5
self.lambda_coord = 1
self.mse_loss = nn.MSELoss(reduction='mean') # Coordinate loss
self.bce_loss = nn.BCELoss(reduction='mean') # Confidence loss
#self.ce_loss = nn.CrossEntropyLoss() # Class loss
def forward(self, x, targets=None):
nA = self.num_anchors
nB = x.size(0)
nGy = x.size(2)
nGx = x.size(3)
stride = self.image_dim / nGy
# Tensors for cuda support
FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor
ByteTensor = torch.cuda.ByteTensor if x.is_cuda else torch.ByteTensor
prediction = x.view(nB, nA, self.bbox_attrs, nGy, nGx).permute(0, 1, 3, 4, 2).contiguous()
# Get outputs
x = torch.sigmoid(prediction[..., 0]) # Center x
y = torch.sigmoid(prediction[..., 1]) # Center y
w = prediction[..., 2] # Width
h = prediction[..., 3] # Height
pred_conf = torch.sigmoid(prediction[..., 4]) # Conf
#pred_cls = torch.sigmoid(prediction[..., 5:]) # Cls pred.
# Calculate offsets for each grid
grid_x = torch.arange(nGx).repeat(nGy, 1).view([1, 1, nGy, nGx]).type(FloatTensor)
grid_y = torch.arange(nGy).repeat(nGx, 1).t().view([1, 1, nGy, nGx]).type(FloatTensor)
scaled_anchors = FloatTensor([(a_w / stride, a_h / stride) for a_w, a_h in self.anchors])
anchor_w = scaled_anchors[:, 0:1].view((1, nA, 1, 1))
anchor_h = scaled_anchors[:, 1:2].view((1, nA, 1, 1))
# Add offset and scale with anchors
pred_boxes = FloatTensor(prediction[..., :4].shape)
pred_boxes[..., 0] = x.detach() + grid_x
pred_boxes[..., 1] = y.detach() + grid_y
pred_boxes[..., 2] = torch.exp(w.detach()) * anchor_w
pred_boxes[..., 3] = torch.exp(h.detach()) * anchor_h
# Training
if targets is not None:
if x.is_cuda:
self.mse_loss = self.mse_loss.cuda()
self.bce_loss = self.bce_loss.cuda()
#self.ce_loss = self.ce_loss.cuda()
nGT, nCorrect, mask, conf_mask, tx, ty, tw, th, tconf, corr = build_targets(
pred_boxes=pred_boxes.cpu().detach(),
pred_conf=pred_conf.cpu().detach(),
#pred_cls=pred_cls.cpu().detach(),
target=targets.cpu().detach(),
anchors=scaled_anchors.cpu().detach(),
num_anchors=nA,
num_classes=self.num_classes,
grid_size_y=nGy,
grid_size_x=nGx,
ignore_thres=self.ignore_thres,
img_dim=self.image_dim,
)
nProposals = int((pred_conf > 0.5).sum().item())
recall = float(nCorrect / nGT) if nGT else 1
nCorrPrec = int((corr).sum().item())
precision = float(nCorrPrec / nProposals) if nProposals > 0 else 0
# Handle masks
mask = mask.type(ByteTensor)
conf_mask = conf_mask.type(ByteTensor)
# Handle target variables
tx = tx.type(FloatTensor)
ty = ty.type(FloatTensor)
tw = tw.type(FloatTensor)
th = th.type(FloatTensor)
tconf = tconf.type(FloatTensor)
#tcls = tcls.type(LongTensor)
# Get conf mask where gt and where there is no gt
conf_mask_true = mask
conf_mask_false = conf_mask - mask
mask = mask.bool()
conf_mask_false = conf_mask_false.bool()
conf_mask_true = conf_mask_true.bool()
# Mask outputs to ignore non-existing objects
loss_x = self.mse_loss(x[mask], tx[mask])
loss_y = self.mse_loss(y[mask], ty[mask])
loss_w = self.mse_loss(w[mask], tw[mask])
loss_h = self.mse_loss(h[mask], th[mask])
loss_conf = 30*self.bce_loss(pred_conf[conf_mask_false], tconf[conf_mask_false]) + 1*self.bce_loss(
pred_conf[conf_mask_true], tconf[conf_mask_true]
)
#loss_cls = (1 / nB) * self.ce_loss(pred_cls[mask], torch.argmax(tcls[mask], 1))
loss = loss_x + loss_y + loss_w + loss_h + loss_conf #+ loss_cls
return (
loss,
loss_x.item(),
loss_y.item(),
loss_w.item(),
loss_h.item(),
loss_conf.item(),
0,
recall,
precision,
)
else:
# If not in training phase return predictions
output = torch.cat(
(
pred_boxes.view(nB, -1, 4) * stride,
pred_conf.view(nB, -1, 1),
#pred_cls.view(nB, -1, self.num_classes),
),
-1,
)
return output
class ROBO(nn.Module):
def __init__(self, inch=3, ch=4, img_shape=(384,512), bn = False, halfRes=False):
super(ROBO,self).__init__()
self.img_shape = (img_shape[0] // 2,img_shape[1] // 2) if halfRes else img_shape
self.bn = bn
self.halfRes = halfRes
self.loss_names = ["x", "y", "w", "h", "conf", "cls", "recall", "precision"]
self.branchLayers = [
10 if halfRes else 11,
-1
]
self.anchors = [
(42,39),
(29,16),
(31,109),
(79,106),
]
if bn:
ch *= 2
self.downPart = nn.ModuleList([
None if halfRes else Conv(inch,ch,2), # Stride: 2
Conv(inch if halfRes else ch,ch*2,2), # Stride: 4
Conv(ch*2,ch*4,2), # Stride: 8
Conv(ch*4,ch*2,1,1),
Conv(ch*2,ch*4,1),
Conv(ch*4,ch*8,2), # Stride: 16
Conv(ch*8,ch*4,1,1),
Conv(ch*4,ch*8,1),
Conv(ch*8,ch*16,2), # Stride: 32
Conv(ch*16,ch*8,1,1),
Conv(ch*8,ch*16,1),
Conv(ch*16,ch*8,1,1),
Conv(ch*8,ch*16,1), # First Classifier
Conv(ch*16,ch*32,2), # Stride: 64
Conv(ch*32,ch*16,1,1),
Conv(ch*16,ch*32,1),
Conv(ch*32,ch*16,1,1),
Conv(ch*16,ch*32,1) # Second Classifier
])
self.classifiers = nn.ModuleList([
nn.Conv2d(ch*16,10,1),
nn.Conv2d(ch*32,10,1)
])
else:
self.downPart = nn.ModuleList([
None if halfRes else Conv(inch,ch,2), # Stride: 2
Conv(inch if halfRes else ch,ch*2,2), # Stride: 4
Conv(ch*2,ch*4,2), # Stride: 8
Conv(ch*4,ch*4,1),
Conv(ch*4,ch*8,2), # Stride: 16
Conv(ch*8,ch*8,1),
Conv(ch*8,ch*16,2), # Stride: 32
Conv(ch*16,ch*16,1),
Conv(ch*16,ch*16,1),
Conv(ch*16,ch*16,1),
Conv(ch*16,ch*16,1), # First Classifier
Conv(ch*16,ch*32,2), # Stride: 64
Conv(ch*32,ch*16,1),
Conv(ch*16,ch*32,1),
Conv(ch*32,ch*16,1),
Conv(ch*16,ch*32,1) # Second Classifier
])
self.classifiers = nn.ModuleList([
nn.Conv2d(ch*16,10,1),
nn.Conv2d(ch*32,10,1)
])
self.yolo = nn.ModuleList([
YOLOLayer(self.anchors[0:2], 2, img_shape[0]),
YOLOLayer(self.anchors[2:4], 2, img_shape[0])
])
def forward(self, x, targets = None):
is_training = targets is not None
output = []
self.losses = defaultdict(float)
outNum = 0
self.recprec = [0, 0, 0, 0]
layer_outputs = [x]
for layer in self.downPart:
if layer is not None:
layer_outputs.append(layer(layer_outputs[-1]))
for idx, cl, yolo in zip(self.branchLayers,self.classifiers,self.yolo):
out = cl(layer_outputs[idx])
if is_training:
out, *losses = yolo(out, targets[outNum])
self.recprec[outNum * 2] += (losses[-2])
self.recprec[outNum * 2 + 1] += (losses[-1])
for name, loss in zip(self.loss_names, losses):
self.losses[name] += loss
# Test phase: Get detections
else:
out = yolo(out)
output.append(out)
outNum += 1
self.losses["recall"] /= outNum
self.losses["precision"] /= outNum
return sum(output) if is_training else torch.cat(output, 1)
def get_computations(self,pruned = False):
H, W = self.img_shape
computations = []
for module in self.downPart:
if module is not None:
ratio = float(module.conv.weight.nonzero().size(0)) / float(module.conv.weight.numel()) if pruned else 1
if module is not None:
comp, W, H = module.getComp(W,H)
computations.append(comp * ratio)
H, W = self.img_shape[0] // 32, self.img_shape[1] // 32
computations.append(H*W*64*10*2 * (2 if self.bn else 1))
computations.append(H*W*128*10//2 * (2 if self.bn else 1))
return computations
def getParams(self):
params = sum([layer.getParams() for layer in self.downPart if layer is not None])
params += 64*10*2 * (2 if self.bn else 1)
params += 128*10//2 * (2 if self.bn else 1)
return params