-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathConvLayers.cpp
281 lines (232 loc) · 7.48 KB
/
ConvLayers.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
//
// ConvLayers.cpp
// ConvNet
//
// Created by Márton Szemenyei on 2017. 09. 28..
// Copyright © 2017. Márton Szemenyei. All rights reserved.
//
#include "ConvLayers.h"
#include "Utils.h"
#include "BLAS.h"
ConvLayer::ConvLayer(int32_t _h, int32_t _w, int32_t _inCh, int32_t _outCh, Tuple _size, Tuple _stride, Tuple _padding, Tuple _dilation, ACTIVATION _activation, bool _hasBias)
{
// Setup layer variables
type = CONV;
inW = _w;
inH = _h;
outCh = _outCh;
inCh = _inCh;
hasBias = _hasBias;
padding = _padding;
dilation = _dilation;
stride = _stride;
size = _size;
activation = _activation;
cropRows = 0;
// Calculate output size
outW = (inW + 2 * padding.x - (dilation.x * (size.x - 1) + 1)) / stride.x + 1;
outH = (inH + 2 * padding.y - (dilation.y * (size.y - 1) + 1)) / stride.y + 1;
// Reserve weights and output
weights = new float[outCh*size.x*size.y*inCh];
if (hasBias) {
bias = new float[outCh];
}
outputs = new float[outW*outH*outCh];
lut = new int32_t[outH*outW*size.x*size.y*inCh];
getim2colLUT(inCh, inH, inW, size, stride, padding, dilation, lut);
}
ConvLayer::~ConvLayer()
{
delete [] weights;
if (hasBias) {
delete [] bias;
}
delete [] outputs;
delete [] lut;
}
void ConvLayer::forward()
{
if (inputs)
{
//int32_t currInH = inH - cropRows;
//int32_t currOutH = outH - getNextCropRows();
// Compute matrix sizes
int32_t k = size.x*size.y*inCh;
int32_t n = outH*outW;
// Fill output with 0
fill(getN(), 0.f, outputs);
// Convert input into a special matrix for convolution
im2colLUT(inputs, outH*outW*size.x*size.y*inCh, lut, workspace);
//im2col(inputs, inCh, inH, inW, size, stride, padding, dilation, workspace);
// Convolution as matrix multiplication
gemm(false,false,outCh,n,k,weights,k,workspace,n,1,outputs,n);
// Add bias
if (hasBias) {
addBias(outputs, bias, outCh, outH*outW);
}
// Apply activation function
activate(outputs, outH*outW*outCh, activation);
}
}
bool ConvLayer::loadWeights( std::ifstream &file )
{
int32_t wCnt = size.x*size.y*inCh*outCh;
// Load weights and bias (if the layer has bias)
return loadweights_bin(file, wCnt, weights) && (!hasBias || loadweights_bin(file, outCh, bias));
}
void ConvLayer::print()
{
#ifndef NN_SILENT
// Print parameters in a nice aligned way
std::cout << "Convolutional" << std::setw(7) << "(" << std::setw(3) << inCh << " x " << std::setw(3) << inW << " x " << std::setw(3) << inH << ")->(" << std::setw(3) << outCh << " x " << std::setw(3) << outW << " x " << std::setw(3) << outH << ") Size: (" << size.x << "x" << size.y << ") * (" << dilation.x << "," << dilation.y << ") -> " << act2string(activation) << std::endl;
#endif
}
int32_t ConvLayer::getWorkSpaceSize()
{
// Size of the matrix used for the convolution
return outH*outW*size.x*size.y*inCh;
}
bool ConvLayer::HasBias()
{
return hasBias;
}
TransposedConvLayer::TransposedConvLayer(int32_t _h, int32_t _w, int32_t _inCh, int32_t _outCh, Tuple _size, Tuple _stride, Tuple _padding, int32_t _outPadding, ACTIVATION _activation, bool _hasBias)
{
// Setup layer variables
type = TRCONV;
inW = _w;
inH = _h;
outCh = _outCh;
inCh = _inCh;
hasBias = _hasBias;
padding = _padding;
outPadding = _outPadding;
stride = _stride;
size = _size;
activation = _activation;
cropRows = 0;
// Calculate output size
outW = (inW - 1) * stride.x - 2 * padding.x + size.x + outPadding;
outH = (inH - 1) * stride.y - 2 * padding.y + size.y + outPadding;
// Reserve weights and output
weights = new float[outCh*size.x*size.y*inCh];
if (hasBias) {
bias = new float[outCh];
}
outputs = new float[outW*outH*outCh];
}
TransposedConvLayer::~TransposedConvLayer()
{
delete [] weights;
if (hasBias) {
delete [] bias;
}
delete [] outputs;
}
void TransposedConvLayer::forward()
{
if (inputs)
{
int32_t currInH = inH - cropRows;
int32_t currOutH = outH - getNextCropRows();
// Compute matrix sizes
int32_t m = size.x*size.y*outCh;
int32_t n = currInH*inW;
// Fill output with 0
fill(getN(), 0.f, outputs);
// Transposed convolution as matrix multiplication
gemm(true,false,m,n,inCh,weights,m,inputs,n,0,workspace,n);
// Convert output matrix into an image-like array
col2im(workspace, outCh, currOutH, outW, size, stride, padding, outputs);
// Add bias
if (hasBias) {
addBias(outputs, bias, outCh, currOutH*outW);
}
// Apply activation function
activate(outputs, currOutH*outW*outCh, activation);
}
}
bool TransposedConvLayer::loadWeights( std::ifstream &file )
{
int32_t wCnt = size.x*size.y*inCh*outCh;
// Load weights and bias (if the layer has bias)
return loadweights_bin(file, wCnt, weights) && (!hasBias || loadweights_bin(file, outCh, bias));
}
void TransposedConvLayer::print()
{
#ifndef NN_SILENT
// Print parameters in a nice aligned way
std::cout << "Tr Convolutional" << std::setw(4) << "(" << std::setw(3) << inCh << " x " << std::setw(3) << inW << " x " << std::setw(3) << inH << ")->(" << std::setw(3) << outCh << " x " << std::setw(3) << outW << " x " << std::setw(3) << outH << ") Size: (" << size .x<< "x" << size.y << ")" << std::setw(8) << " -> " << act2string(activation) << std::endl;
#endif
}
int32_t TransposedConvLayer::getWorkSpaceSize()
{
// Size of the matrix used for the convolution
return inH*inW*size.x*size.y*outCh;
}
bool TransposedConvLayer::HasBias()
{
return hasBias;
}
FCLayer::FCLayer(int32_t _inCh, int32_t _outCh, ACTIVATION _activation, bool _hasBias)
{
// Setup layer variables
type = FC;
outCh = _outCh;
inCh = _inCh;
hasBias = _hasBias;
activation = _activation;
cropRows = 0;
inW = inH = outW = outH = 1;
// Reserve weights and output
weights = new float[outCh*inCh];
if (hasBias) {
bias = new float[outCh];
}
outputs = new float[outCh];
}
FCLayer::FCLayer()
{
delete [] weights;
if (hasBias) {
delete [] bias;
}
delete [] outputs;
}
void FCLayer::forward()
{
if (inputs)
{
// Fill output with 0
fill(getN(), 0.f, outputs);
// Convolution as matrix multiplication
gemm(false,false,outCh,1,inCh,weights,inCh,inputs,1,1,outputs,1);
// Add bias
if (hasBias) {
addBias(outputs, bias, outCh, 1);
}
// Apply activation function
activate(outputs, outH*outW*outCh, activation);
}
}
bool FCLayer::loadWeights( std::ifstream &file )
{
int32_t wCnt = inCh*outCh;
// Load weights and bias (if the layer has bias)
return loadweights_bin(file, wCnt, weights) && (!hasBias || loadweights_bin(file, outCh, bias));
}
void FCLayer::print()
{
#ifndef NN_SILENT
// Print parameters in a nice aligned way
std::cout << "Fully Connected" << std::setw(7) << "(" << std::setw(3) << inCh << ")->(" << std::setw(3) << outCh << ")" << " -> " << act2string(activation) << std::endl;
#endif
}
int32_t FCLayer::getWorkSpaceSize()
{
return 0;
}
bool FCLayer::HasBias()
{
return hasBias;
}