-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRoboDNN.cpp
270 lines (238 loc) · 8.48 KB
/
RoboDNN.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
//
// RoboDNN.cpp
// ConvNet
//
// Created by Márton Szemenyei on 2017. 09. 28..
// Copyright © 2017. Márton Szemenyei. All rights reserved.
//
#include "RoboDNN.h"
#include "Utils.h"
#include "BLAS.h"
#include "ConvLayers.h"
#include "PoolLayers.h"
#include "UtilityLayers.h"
Network::~Network()
{
if (workspace) {
delete [] workspace;
}
if (mean) {
delete [] mean;
}
if (std) {
delete [] std;
}
for (size_t i = 0; i < layers.size(); i++)
{
delete layers[i];
}
}
bool Network::readNetworkFromConfig(const std::string &cfgFile)
{
std::ifstream ifile;
ifile.open( cfgFile.c_str() );
if (!ifile.is_open()) {
return false;
}
std::vector<std::string> settings;
// Read first blob of info (blobs end with empty line)
readBlob(ifile, settings);
// First must have at least 4 elemets (network, width, height, channels)
if( settings.size() < 4 )
{
return false;
}
// First must be network
if( getLayerType(settings[0]) != NETWORK )
{
return false;
}
// Get setings
W = findIntOption(settings, "width", 0);
H = findIntOption(settings, "height", 0);
ch = findIntOption(settings, "channels", 0);
downFactor = findIntOption(settings, "downscale", 1);
std::string meanS = findStringOption(settings, "mean", "");
std::string stdS = findStringOption(settings, "std", "");
// Sanity check
if (W <= 0 || H <= 0 || ch <= 0) {
return false;
}
mean = new float[ch];
std = new float[ch];
// optional normalization
if (!meanS.empty() && !stdS.empty())
{
normalize = true;
std::string val;
std::stringstream iss(meanS);
int32_t cnt = 0;
while (std::getline(iss, val, ',')) {
mean[cnt] = std::stof(val)*255;
cnt += 1;
}
std::stringstream iss2(stdS);
cnt = 0;
while (std::getline(iss2, val, ',')) {
std[cnt] = 1.0 / (255.0 * std::stof(val));
cnt += 1;
}
}
// Read all other layers
while (true)
{
readBlob(ifile, settings);
if (settings.empty() )
break;
constructLayer(settings);
layers.back()->print();
// Find largest workspace requirement
int32_t currWsSize = layers.back()->getWorkSpaceSize();
if( currWsSize > workspaceSize )
workspaceSize = currWsSize;
}
if (layers.size()) {
// Set output and create workspace
output = layers.back()->getOutput();
workspace = new float [workspaceSize];
for (size_t i = 0; i < layers.size(); i++) {
layers[i]->setWorkSpace(workspace);
}
}
return true;
}
void Network::constructLayer( const std::vector<std::string> & settings )
{
// Read layer type
LAYERTYPE type = getLayerType(settings[0]);
#ifndef NN_SILENT
std::cout << index++ << " ";
#endif
// Set input options
int32_t inputIndex = findIntOption(settings, "input", -1);
inputIndex = convertIndex( inputIndex, static_cast<int32_t>(layers.size()));
int32_t inCh = layers.empty() || inputIndex < 0 ? ch : layers[inputIndex]->getCh();
int32_t inW = layers.empty() || inputIndex < 0 ? W : layers[inputIndex]->getW();
int32_t inH = layers.empty() || inputIndex < 0 ? H : layers[inputIndex]->getH();
float *input = layers.empty() || inputIndex < 0 ? nullptr : layers[inputIndex]->getOutput();
// Try and read all other options
Tuple size = findTupleOption(settings, "size", 3);
Tuple pad = findTupleOption(settings, "pad", 0);
Tuple stride = findTupleOption(settings, "stride", 1);
Tuple dilation = findTupleOption(settings, "dilation", 1);
int32_t outPad = findIntOption(settings, "outpad", 0);
int32_t filters = findIntOption(settings, "filters", 1);
int32_t layerIndex = findIntOption(settings, "from", 0);
int32_t oned = findIntOption(settings, "oned", 0);
layerIndex = convertIndex( layerIndex, static_cast<int32_t>(layers.size()), true);
bool hasBias = findBoolOption(settings, "hasBias", true);
bool reverse = findBoolOption(settings, "reverse", true);
bool affine = findBoolOption(settings, "affine", true);
ACTIVATION activation = string2Act(findStringOption(settings, "activation", "none"));
int32_t channelCnt;
// Construct layer
switch (type) {
case CONV:
layers.push_back( new ConvLayer(inH, inW, inCh, filters, size, stride, pad, dilation, activation, hasBias) );
layers.back()->setInput(input);
break;
case TRCONV:
layers.push_back( new TransposedConvLayer(inH, inW, inCh, filters, size, stride, pad, outPad, activation, hasBias) );
layers.back()->setInput(input);
break;
case FC:
layers.push_back( new FCLayer(inCh, filters, activation, hasBias) );
layers.back()->setInput(input);
break;
case MAXPOOL:
layers.push_back( new MaxPoolLayer(inH, inW, inCh, size, stride, activation) );
layers.back()->setInput(input);
break;
case AVGPOOL:
layers.push_back( new AvgPoolLayer(inH, inW, inCh, size, stride, activation) );
layers.back()->setInput(input);
break;
case BATCHNORM:
layers.push_back( new BatchNormLayer(inH, inW, inCh, affine, activation) );
static_cast<BatchNormLayer*>(layers.back())->setInplaceInput(input);
break;
case REORG:
layers.push_back( new ReorgLayer(inH, inW, inCh, stride, reverse, activation) );
layers.back()->setInput(input);
break;
case ROUTE:
channelCnt = layers[layerIndex]->getCh();
layers.push_back( new RouteLayer(layers[layerIndex]->getH(), layers[layerIndex]->getW(), channelCnt, layerIndex, activation) );
static_cast<RouteLayer*>(layers.back())->setInplaceInput(layers[layerIndex]->getOutput());
break;
case CONCAT:
channelCnt = oned > 0 ? layers[layerIndex]->getCh()*layers[layerIndex]->getH()*layers[layerIndex]->getW() : layers[layerIndex]->getCh();
layers.push_back( new ConcatLayer(inH, inW, inCh, channelCnt, oned, layerIndex, activation) );
// Set the two inputs
layers.back()->setInput(input);
static_cast<ConcatLayer*>(layers.back())->setOtherInput(layers[layerIndex]->getOutput());
break;
case SHORTCUT:
channelCnt = std::min( inCh, layers[layerIndex]->getCh());
layers.push_back( new ShortcutLayer(inH, inW, channelCnt, inCh, layerIndex, activation) );
// Setting inplace input (this will also be the output)
static_cast<ShortcutLayer*>(layers.back())->setInplaceInput(input);
// Connect the other layer
layers.back()->setInput(layers[layerIndex]->getOutput());
break;
case SOFTMAX:
layers.push_back( new SoftMaxLayer(inH, inW, inCh) );
layers.back()->setInput(input);
break;
case NETWORK:
case OTHER:
break;
}
}
bool Network::loadWeights(const std::string &dir, const std::string &wFilename)
{
// Open weights file
std::ifstream file;
file.open( dir + wFilename, std::ios::binary);
if (!file.is_open()) {
std::cout << "Error: could not open weights file" << std::endl;
return false;
}
// Read layer weights
for( size_t i = 0; i < layers.size(); i++ )
{
if( !layers[i]->loadWeights(file) )
return false;
}
return true;
}
int32_t Network::setClipRows( int32_t _clipRows )
{
clipRows = _clipRows - _clipRows % downFactor;
int32_t cropRows = clipRows;
for (size_t i = 0; i < layers.size(); i++) {
layers[i]->setCropRows(cropRows);
cropRows = layers[i]->getNextCropRows();
}
return clipRows;
}
float* Network::forward( float *input )
{
if (!layers.empty()) {
if (normalize)
batchNorm(input, mean, std, ch, H*W);
layers[0]->setInput(input);
for (size_t i = 0; i < layers.size(); i++) {
layers[i]->forward();
}
}
return output;
}
int32_t Network::getOutCnt()
{
return layers.empty() ? 0 : layers.back()->getN();
}
int32_t Network::getOutCh()
{
return layers.empty() ? 0 : layers.back()->getCh();
}