-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathUtilityLayers.cpp
323 lines (273 loc) · 8.78 KB
/
UtilityLayers.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
//
// UltilityLayers.cpp
// ConvNet
//
// Created by Márton Szemenyei on 2017. 09. 28..
// Copyright © 2017. Márton Szemenyei. All rights reserved.
//
#include "UtilityLayers.h"
#include "Utils.h"
#include "BLAS.h"
#include <cmath>
RouteLayer::RouteLayer(int32_t _h, int32_t _w, int32_t _inCh, int32_t _layerIndex, ACTIVATION _activation)
{
// Setup parameters
type = ROUTE;
inW = outW = _w;
inH = outH = _h;
inCh = outCh = _inCh;
layerIndex = _layerIndex;
activation = _activation;
cropRows = 0;
}
RouteLayer::~RouteLayer()
{
// Outputs is not reserved, since the shortcut layer uses the previous layer's output
}
void RouteLayer::forward()
{
}
void RouteLayer::print()
{
// Print layer parameters aligned
#ifndef NN_SILENT
std::cout << "Route Layer" << std::setw(6) << "(" << std::setw(3) << inCh << " x " << std::setw(3) << inW << " x " << std::setw(3) << inH << ")->(" << std::setw(3) << outCh << " x " << std::setw(3) << outW << " x " << std::setw(3) << outH << ") From: " << layerIndex << std::setw(12) << " -> " << act2string(activation) << std::endl;
#endif
}
ShortcutLayer::ShortcutLayer(int32_t _h, int32_t _w, int32_t _inCh, int32_t _outCh, int32_t _layerIndex, ACTIVATION _activation)
{
// Setup parameters
type = SHORTCUT;
inW = outW = _w;
inH = outH = _h;
inCh = _inCh;
outCh = _outCh;
layerIndex = _layerIndex;
activation = _activation;
cropRows = 0;
}
ShortcutLayer::~ShortcutLayer()
{
// Outputs is not reserved, since the shortcut layer uses the previous layer's output
}
void ShortcutLayer::forward()
{
if (inputs && outputs)
{
int32_t currInH = inH - cropRows;
int32_t currOutH = outH - getNextCropRows();
// Apply shortcut (outputs += inputs)
shortcut(inW, currInH, inCh, inputs, outputs);
// Apply activation
activate(outputs, currOutH*outW*outCh, activation);
}
}
void ShortcutLayer::print()
{
#ifndef NN_SILENT
// Print layer parameters aligned
std::cout << "Shortcut Layer" << std::setw(6) << "(" << std::setw(3) << inCh << " x " << std::setw(3) << inW << " x " << std::setw(3) << inH << ")->(" << std::setw(3) << outCh << " x " << std::setw(3) << outW << " x " << std::setw(3) << outH << ") From: " << layerIndex << std::setw(12) << " -> " << act2string(activation) << std::endl;
#endif
}
ReorgLayer::ReorgLayer(int32_t _h, int32_t _w, int32_t _inCh, Tuple _stride, bool _reverse, ACTIVATION _activation)
{
// Setup parameters
type = REORG;
inW = _w;
inH = _h;
inCh = _inCh;
stride = _stride;
reverse = _reverse;
activation = _activation;
cropRows = 0;
// Compute output size
outW = reverse ? inW * stride.x : inW / stride.x;
outH = reverse ? inH * stride.y : inH / stride.y;
outCh = reverse ? inCh / (stride.x*stride.y) : inCh * (stride.x*stride.y);
// Reserve output
outputs = new float [outH*outW*outCh];
}
ReorgLayer::~ReorgLayer()
{
delete [] outputs;
}
void ReorgLayer::forward()
{
if (inputs)
{
int32_t currInH = inH - cropRows;
int32_t currOutH = outH - getNextCropRows();
// Apply reorg operation
reorg(inputs, inW, currInH, inCh, stride, !reverse, outputs);
// Apply activation
activate(outputs, currOutH*outW*outCh, activation);
}
}
void ReorgLayer::print()
{
#ifndef NN_SILENT
// Print layer parameters aligned
std::cout << "Reorg Layer" << std::setw(9) << "(" << std::setw(3) << inCh << " x " << std::setw(3) << inW << " x " << std::setw(3) << inH << ")->(" << std::setw(3) << outCh << " x " << std::setw(3) << outW << " x " << std::setw(3) << outH << ")" << std::setw(20) << " -> " << act2string(activation) << std::endl;
#endif
}
ConcatLayer::ConcatLayer(int32_t _h, int32_t _w, int32_t _c1, int32_t _c2, int32_t oned, int32_t _layerIndex, ACTIVATION _activation)
{
// Setup parameters
type = CONCAT;
inW = _w;
inH = _h;
inCh = _c1;
inCh2 = _c2;
if(oned)
{
outW = outH = 1;
outCh = inCh*inW*inH + inCh2;
}
else
{
outW = _w;
outH = _h;
outCh = _c1 + _c2;
}
layerIndex = _layerIndex;
activation = _activation;
cropRows = 0;
// Reserve outputs
outputs = new float [outH*outW*outCh];
}
ConcatLayer::~ConcatLayer()
{
delete [] outputs;
}
void ConcatLayer::forward()
{
if (inputs && otherInput)
{
int32_t currInH = inH - cropRows;
int32_t currOutH = outH - getNextCropRows();
int32_t secondCnt = (outW == 1) ? inCh2 : inW*currInH*inCh2;
// Concatenate 2 inputs
concat(otherInput, inputs, secondCnt, inW*currInH*inCh, outputs);
// Apply activation
activate(outputs, currOutH*outW*outCh, activation);
}
}
void ConcatLayer::print()
{
#ifndef NN_SILENT
// Print layer parameters aligned
std::cout << "Concat Layer" << std::setw(8) << "(" << std::setw(3) << inCh << " x " << std::setw(3) << inW << " x " << std::setw(3) << inH << ")->(" << std::setw(3) << outCh << " x " << std::setw(3) << outW << " x " << std::setw(3) << outH << "), From: " << layerIndex << std::setw(11) << " -> " << act2string(activation) << std::endl;
#endif
}
BatchNormLayer::BatchNormLayer(int32_t _h, int32_t _w, int32_t _outCh, bool _affine, ACTIVATION _activation)
{
// Setup parameters
type = BATCHNORM;
inW = outW = _w;
inH = outH = _h;
inCh = outCh = _outCh;
affine = _affine;
activation = _activation;
cropRows = 0;
// Reserve parameters
means = new float [outCh];
var = new float [outCh];
if (affine)
{
gamma = new float [outCh];
beta = new float [outCh];
}
// Ouput is not reserved, because the batchNorm is inplace
}
BatchNormLayer::~BatchNormLayer()
{
delete [] means;
delete [] var;
if (affine)
{
delete [] gamma;
delete [] beta;
}
}
void BatchNormLayer::forward()
{
if (outputs)
{
int32_t currOutH = outH - getNextCropRows();
// Apply proper normalization
if (affine)
//batchNormNaive(outputs, means, var, gamma, beta, outCh, currOutH*outW);
batchNorm(outputs, means, var, gamma, beta, outCh, currOutH*outW);
else
batchNorm(outputs, means, var, outCh, currOutH*outW);
// Apply activation
activate(outputs, currOutH*outW*outCh, activation);
}
}
bool BatchNormLayer::loadWeights( std::ifstream &file )
{
// Try to load means, variance and in case of affine normalization the parameters
bool ret = ( !affine || ( loadweights_bin(file, outCh, gamma) && loadweights_bin(file, outCh, beta) ) )
&& loadweights_bin(file, outCh, means) && loadweights_bin(file, outCh, var);
// Compute 1/sqrt(var) in advance
if (ret)
for (int32_t i = 0; i < outCh; i++) {
var[i] = 1.f/(sqrtf(var[i]+.00001f));
}
return ret;
}
bool BatchNormLayer::setWeights( std::vector<float> &vec )
{
// Try to load means, variance and in case of affine normalization the parameters
bool ret = (static_cast<int>(vec.size()) == outCh*2);
if (ret)
{
std::copy(vec.begin(),vec.begin()+outCh,means);
std::copy(vec.begin()+outCh,vec.begin()+2*outCh,var);
}
// Compute 1/sqrt(var) in advance
if (ret)
for (int32_t i = 0; i < outCh; i++) {
var[i] = 1.f/(var[i]+.00001f);
}
return ret;
}
void BatchNormLayer::print()
{
#ifndef NN_SILENT
// Print layer parameters aligned
std::cout << "Normalization" << std::setw(7) << "(" << std::setw(3) << inCh << " x " << std::setw(3) << inW << " x " << std::setw(3) << inH << ")->(" << std::setw(3) << outCh << " x " << std::setw(3) << outW << " x " << std::setw(3) << outH << ") Affine: " << (affine?"Y":"N") << std::setw(10) << " -> " << act2string(activation) << std::endl;
#endif
}
SoftMaxLayer::SoftMaxLayer(int32_t _h, int32_t _w, int32_t _outCh)
{
// Setup parameters
type = SOFTMAX;
inW = outW = _w;
inH = outH = _h;
inCh = outCh = _outCh;
activation = NONE;
cropRows = 0;
// Reserve outputs
outputs = new float [outH*outW*outCh];
}
SoftMaxLayer::~SoftMaxLayer()
{
delete [] outputs;
}
void SoftMaxLayer::forward()
{
if (inputs)
{
int32_t currInH = inH - cropRows;
// Apply softmax
softmax(inputs, inW*currInH*inCh, inCh, outputs);
}
}
void SoftMaxLayer::print()
{
#ifndef NN_SILENT
// Print layer parameters aligned
std::cout << "Softmax" << std::setw(13) << "(" << std::setw(3) << inCh << " x " << std::setw(3) << inW << " x " << std::setw(3) << inH << ")->(" << std::setw(3) << outCh << " x " << std::setw(3) << outW << " x " << std::setw(3) << outH << ")" << std::endl;
#endif
}