diff --git a/notebooks/test_ts.ipynb b/notebooks/test_ts.ipynb index 6d87f9e..2f2b51e 100644 --- a/notebooks/test_ts.ipynb +++ b/notebooks/test_ts.ipynb @@ -129,8 +129,8 @@ " \n", " \n", " Mutations\n", - " 68\n", - " 7.3 KiB\n", + " 77\n", + " 8.3 KiB\n", " \n", " ✅\n", " \n", @@ -139,7 +139,7 @@ " \n", " Nodes\n", " 62\n", - " 53.2 KiB\n", + " 50.9 KiB\n", " \n", " ✅\n", " \n", @@ -180,7 +180,7 @@ " " ], "text/plain": [ - "" + "" ] }, "execution_count": 2, @@ -197,7 +197,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -208,13 +208,16 @@ " 'AG': 7,\n", " 'TC': 7,\n", " 'GA': 4,\n", - " 'A-': 1,\n", + " 'A-': 4,\n", + " 'T-': 3,\n", + " 'C-': 2,\n", " 'TA': 1,\n", " 'GC': 1,\n", - " 'CA': 1})" + " 'CA': 1,\n", + " 'G-': 1})" ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -233,13 +236,13 @@ " mut_pos.append(pos)\n", " mut_types.append(f\"{prev}{mut.derived_state}\")\n", "\n", - "# What is A1547-? One-base deletion in ORF1a.\n", + "\n", "collections.Counter(mut_types)\n" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -258,27 +261,6 @@ " print(f\"pos: {k}; count: {v}\")\n" ] }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# There should be no recurrent mutations this early.\n", - "all(np.array(list(collections.Counter(mut_labels.values()).values()), dtype=int) == 1)\n" - ] - }, { "cell_type": "code", "execution_count": 7, @@ -342,58 +324,58 @@ { "data": { "image/svg+xml": [ - "Genome position029904Node time (days)0.002.003.004.005.005.006.007.008.009.009.0010.0011.0012.0012.0012.0012.2512.6913.0014.0014.0015.0016.0019.0020.0020.0025.0028.0029.0031.5032.0049.0050.003 B\n", + "Genome position029904Node time (days)0.002.003.004.005.005.006.007.008.009.009.0010.0011.0012.0012.0012.0012.2512.6913.0014.0014.0015.0016.0019.0020.0020.0025.0028.0029.0031.5032.0049.0050.003 B\n", "SRR113977274 B\n", "SRR113977306 B\n", "SRR113977267 B\n", - "SRR1139772958 B.40\n", - "ERR4205570C26994T60 B.40\n", + "SRR1139772958 B.40\n", + "ERR4205570C26994T60 B.40\n", "ERR4206593A2480GC2558T54 B.40\n", - "ERR4206180T17247C59 B.33\n", - "ERR4204459C14805T61G26144T5C18060T2 A\n", - "SRR1177265948 A\n", + "ERR4206180T17247C59 B.33\n", + "ERR4204459C14805T61G26144T5C18060T2 A\n", + "SRR1177265948 A\n", "SRR1139771849 A\n", - "SRR11397722C10038T50G28878AG29742A8 A\n", + "SRR11397722C10038T50G28878AG29742A8 A\n", "SRR1159719812 A\n", - "SRR11597132C3176TC21855T13 A\n", + "SRR11597132C3176TC21855T13 A\n", "SRR1159712115 A\n", - "SRR11597177A2476GC29743T21 A\n", - "SRR11494548C24034TT26729CG28077C22 A\n", - "SRR11597140T9477A23 A\n", - "SRR11597151C207TT946CC6363TA11430G30 A\n", - "SRR11597195C4655TG9890TG20527T33 A\n", + "SRR11597177A2476GC29743T21 A\n", + "SRR11494548C24034TT26729CG28077C22 A\n", + "SRR11597140T9477A23 A\n", + "SRR11597151C207TT946CC6363TA11430G30 A\n", + "SRR11597195C4655TG9890TG20527T33 A\n", "SRR1159719140 A\n", - "SRR11597156C29095T46 A\n", - "SRR11597146C289T57 A\n", - "SRR11597218C8782TT28144C9C203TC14889TC21707TC26533T10 B\n", - "SRR11597143C24370T11 B\n", - "SRR1159715424 B\n", - "SRR11597144C9442T25 B\n", - "SRR11597153T25209C26A1547-G28845T28 B\n", - "SRR11597164C3768T29 B\n", - "SRR11597190C12896T14 B\n", - "SRR11597220C5239TC28830A27 B\n", - "SRR11597114C17373T3116 B\n", + "SRR11597156C29095T46 A\n", + "SRR11597146C289TA29749-C29750-G29751-57 A\n", + "SRR11597218C8782TT28144C9C203TC14889TC21707TC26533T10 B\n", + "SRR11597143C24370T11 B\n", + "SRR1159715424 B\n", + "SRR11597144C9442T25 B\n", + "SRR11597153T25209C26A1547-G28845T28 B\n", + "SRR11597164C3768TA3951-T3952-A3953-29 B\n", + "SRR11597190C12896T14 B\n", + "SRR11597220C5239TC28830A27 B\n", + "SRR11597114C17373T3116 B\n", "SRR1216223217 B.1\n", "SRR1216223318 B.1\n", "SRR1216223419 B\n", - "SRR12162235C17074TC27213TT27384C20C14408T32 B.1\n", + "SRR12162235C17074TC27213TT27384C20C14408T32 B.1\n", "ERR423926643 B.1\n", - "SRR11597196C241TA23403G44C3037T34A871GA3027GC3787T36 B\n", + "SRR11597196C241TA23403G44C3037T34A871GA3027GC3787T36 B\n", "SRR1159718837 B\n", "SRR1159713638 B\n", "SRR1159717556 B\n", - "SRR11597207G2293T39C26333T35 B\n", + "SRR11597207G2293T39T7260-T7261-C7262-C26333T35 B\n", "SRR1159717442 B\n", - "SRR11597178C1190T45G1397AG1805AT28688CC29670TG29742T47 B.4\n", - "SRR11597150C5025T41 B\n", + "SRR11597178C1190T45G1397AG1805AT28688CC29670TG29742T47 B.4\n", + "SRR11597150C5025T41 B\n", "SRR1159716851 B\n", - "SRR11597163C15324TC29303T5253 B\n", - "SRR11597216A11782GC16308TG23236TG29449T55 B\n", + "SRR11597163C15324TC29303T5253 B\n", + "SRR11597216A11782GC16308TG23236TG29449T55 B\n", "SRR1159711610" ], "text/plain": [ - "'Genome position029904Node time (days)0.002.003.004.005.005.006.007.008.009.009.0010.0011.0012.0012.0012.0012.2512.6913.0014.0014.0015.0016.0019.0020.0020.0025.0028.0029.0031.5032.0049.0050.003 B\\nSRR113977274 B\\nSRR113977306 B\\nSRR113977267 B\\nSRR1139772958 B.40\\nERR4205570C26994T60 B.40\\nERR4206593A2480GC2558T54 B.40\\nERR4206180T17247C59 B.33\\nERR4204459C14805T61G26144T5C18060T2 A\\nSRR1177265948 A\\nSRR1139771849 A\\nSRR11397722C10038T50G28878AG29742A8 A\\nSRR1159719812 A\\nSRR11597132C3176TC21855T13 A\\nSRR1159712115 A\\nSRR11597177A2476GC29743T21 A\\nSRR11494548C24034TT26729CG28077C22 A\\nSRR11597140T9477A23 A\\nSRR11597151C207TT946CC6363TA11430G30 A\\nSRR11597195C4655TG9890TG20527T33 A\\nSRR1159719140 A\\nSRR11597156C29095T46 A\\nSRR11597146C289T57 A\\nSRR11597218C8782TT28144C9C203TC14889TC21707TC26533T10 B\\nSRR11597143C24370T11 B\\nSRR1159715424 B\\nSRR11597144C9442T25 B\\nSRR11597153T25209C26A1547-G28845T28 B\\nSRR11597164C3768T29 B\\nSRR11597190C12896T14 B\\nSRR11597220C5239TC28830A27 B\\nSRR11597114C17373T3116 B\\nSRR1216223217 B.1\\nSRR1216223318 B.1\\nSRR1216223419 B\\nSRR12162235C17074TC27213TT27384C20C14408T32 B.1\\nERR423926643 B.1\\nSRR11597196C241TA23403G44C3037T34A871GA3027GC3787T36 B\\nSRR1159718837 B\\nSRR1159713638 B\\nSRR1159717556 B\\nSRR11597207G2293T39C26333T35 B\\nSRR1159717442 B\\nSRR11597178C1190T45G1397AG1805AT28688CC29670TG29742T47 B.4\\nSRR11597150C5025T41 B\\nSRR1159716851 B\\nSRR11597163C15324TC29303T5253 B\\nSRR11597216A11782GC16308TG23236TG29449T55 B\\nSRR1159711610'" + "'Genome position029904Node time (days)0.002.003.004.005.005.006.007.008.009.009.0010.0011.0012.0012.0012.0012.2512.6913.0014.0014.0015.0016.0019.0020.0020.0025.0028.0029.0031.5032.0049.0050.003 B\\nSRR113977274 B\\nSRR113977306 B\\nSRR113977267 B\\nSRR1139772958 B.40\\nERR4205570C26994T60 B.40\\nERR4206593A2480GC2558T54 B.40\\nERR4206180T17247C59 B.33\\nERR4204459C14805T61G26144T5C18060T2 A\\nSRR1177265948 A\\nSRR1139771849 A\\nSRR11397722C10038T50G28878AG29742A8 A\\nSRR1159719812 A\\nSRR11597132C3176TC21855T13 A\\nSRR1159712115 A\\nSRR11597177A2476GC29743T21 A\\nSRR11494548C24034TT26729CG28077C22 A\\nSRR11597140T9477A23 A\\nSRR11597151C207TT946CC6363TA11430G30 A\\nSRR11597195C4655TG9890TG20527T33 A\\nSRR1159719140 A\\nSRR11597156C29095T46 A\\nSRR11597146C289TA29749-C29750-G29751-57 A\\nSRR11597218C8782TT28144C9C203TC14889TC21707TC26533T10 B\\nSRR11597143C24370T11 B\\nSRR1159715424 B\\nSRR11597144C9442T25 B\\nSRR11597153T25209C26A1547-G28845T28 B\\nSRR11597164C3768TA3951-T3952-A3953-29 B\\nSRR11597190C12896T14 B\\nSRR11597220C5239TC28830A27 B\\nSRR11597114C17373T3116 B\\nSRR1216223217 B.1\\nSRR1216223318 B.1\\nSRR1216223419 B\\nSRR12162235C17074TC27213TT27384C20C14408T32 B.1\\nERR423926643 B.1\\nSRR11597196C241TA23403G44C3037T34A871GA3027GC3787T36 B\\nSRR1159718837 B\\nSRR1159713638 B\\nSRR1159717556 B\\nSRR11597207G2293T39T7260-T7261-C7262-C26333T35 B\\nSRR1159717442 B\\nSRR11597178C1190T45G1397AG1805AT28688CC29670TG29742T47 B.4\\nSRR11597150C5025T41 B\\nSRR1159716851 B\\nSRR11597163C15324TC29303T5253 B\\nSRR11597216A11782GC16308TG23236TG29449T55 B\\nSRR1159711610'" ] }, "execution_count": 9, @@ -454,7 +436,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -473,7 +455,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -501,16 +483,18 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Counting descendants : 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 62/62 [00:00<00:00, 844307.95it/s]\n", - "Indexing metadata : 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 62/62 [00:00<00:00, 37363.05it/s]\n", - "Classifying mutations: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 68/68 [00:00<00:00, 107627.42it/s]\n" + "Counting descendants : 100%|███████████████████████████████████████████████████████| 62/62 [00:00<00:00, 509895.78it/s]\n", + "Indexing metadata : 0%| | 0/62 [00:00\n", " \n", " mutations\n", - " 68\n", + " 77\n", " \n", " \n", " recurrent\n", @@ -592,7 +576,7 @@ " \n", " \n", " private_mutations\n", - " 47\n", + " 56\n", " \n", " \n", " transitions\n", @@ -608,7 +592,7 @@ " \n", " \n", " deletions\n", - " 1\n", + " 10\n", " \n", " \n", " max_mutations_parents\n", @@ -620,7 +604,7 @@ " \n", " \n", " sites_with_zero_muts\n", - " 29350\n", + " 29341\n", " \n", " \n", " max_mutations_per_site\n", @@ -628,7 +612,7 @@ " \n", " \n", " mean_mutations_per_site\n", - " 0.002312\n", + " 0.002618\n", " \n", " \n", " median_mutations_per_site\n", @@ -644,11 +628,11 @@ " \n", " \n", " max_masked_sites_per_sample\n", - " 858\n", + " 0\n", " \n", " \n", " mean_masked_sites_per_sample\n", - " 447.612245\n", + " 0.0\n", " \n", " \n", " max_masked_samples_per_site\n", @@ -656,7 +640,7 @@ " \n", " \n", " mean_masked_samples_per_site\n", - " 0.439338\n", + " 0.39229\n", " \n", " \n", " max_samples_per_day\n", @@ -671,10 +655,10 @@ "" ], "text/plain": [ - "" + "" ] }, - "execution_count": 13, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -686,12 +670,12 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAAGzCAYAAAAsf/kbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEQElEQVR4nOzdd3gU5drH8d8mpAIJIJCEHnrviqhYDpGAHAU9KiBHEBEVQUEQFQvNgnAU0FcECwh6FBRFBAvFIKAQ6ZEOAsFQklDTIXXePzhZsqTtkjK7yfdzXXtld+aZZ+5n2s7eeWbGYhiGIQAAAAAAAAAwgZvZAQAAAAAAAAAov0hQAgAAAAAAADANCUoAAAAAAAAApiFBCQAAAAAAAMA0JCgBAAAAAAAAmIYEJQAAAAAAAADTkKAEAAAAAAAAYBoSlAAAAAAAAABMQ4ISAAAAAAAAgGlIUAIAAAAAAAAwDQlKAAAAAAAAAKYhQQkAAIqdYRgyDMPsMAAAAAC4ABKUAACg2MybN0+tW7eWt7e3vL291bp1a33yySdmhwUAAADAiVUwOwAAAFA2TJgwQTNmzNDTTz+trl27SpLCw8P17LPPKioqSlOmTDE5QgAAAADOyGJw/RUAACgGNWrU0HvvvacBAwbYDF+0aJGefvppnT171qTIAAAAADgzLvEGAADFIj09XZ07d841vFOnTsrIyDAhIgAAAACugAQlAAAoFg8//LDmzJmTa/hHH32kgQMHmhARAAAAAFfAPSgBAMA1GzNmjPW9xWLRJ598otWrV+vGG2+UJG3evFlRUVEaNGiQWSECAAAAcHLcgxIAAFyzO+64w65yFotFa9euLeFoAAAAALgiEpQAAAAAAAAATMMl3gAAAAAAACiS06dP6+DBg5KkZs2aqWbNmiZHZJ74+HjFxMRIkgIDA+Xv729yRM6PBCUAACg227Zt09dff62oqCilpaXZjFu6dKlJUQEAADjmxIkTWr58eZ7nNDNmzDApKnMUtiwSExP11FNPafHixcrMzJQkubu7q1+/fpo9e3a5Ss598sknmjFjhjVRm61Zs2YaO3ashg4dalJkzo8EJQAAKBaLFy/WoEGDFBoaqtWrV6tHjx46dOiQYmNjde+995odHgAAgF3CwsJ0zz33qGHDhjpw4IBat26tY8eOyTAMdezY0ezwSpU9y+Kxxx7Tzp079cMPP6hr166SpPDwcI0aNUpPPPGEFi9ebGYTSs1//vMfTZo0Sc8884xCQ0MVEBAgSYqNjdXq1as1atQoXbhwQc8995zJkTon7kEJAACKRdu2bfXEE09oxIgRqly5sv78808FBwfriSeeUFBQkCZPnmx2iAAAAIW64YYb1KtXL02ePNl6TlOzZk0NHDhQPXv21PDhw80OsdTYsywqVqyoVatW6ZZbbrGZ9rffflPPnj2VnJxsUvSlq379+vrPf/6jBx98MM/xX331lcaNG6eoqKhSjsw1uJkdAAAAKBuOHDmi3r17S5I8PT2VnJwsi8WiZ599Vh999JHJ0QEAANhn//79GjRokCSpQoUKunjxoipVqqQpU6Zo2rRpJkdXuuxZFtddd12el3H7+/uratWqpRqvmU6fPq02bdrkO75NmzY6e/ZsKUbkWkhQAgCAYlG1alUlJiZKkmrXrq09e/ZIkuLi4pSSkmJmaAAAAHarWLGi9V6LQUFBOnLkiHVceUsw2bMsXnnlFY0ZM8b6UBhJiomJ0bhx4/Tqq6+WbsAmuv766/XWW28pIyMj17jMzExNmzZN119/vQmRuQbuQQkAAIrFrbfeqjVr1qhNmzZ64IEHNGrUKK1du1Zr1qxR9+7dzQ4PAADALjfeeKN+//13tWjRQnfddZfGjh2r3bt3a+nSpbrxxhvNDq9U5bcs3njjDVWoUMF6H8q//vpL9erVU7169SRJUVFR8vLy0pkzZ/TEE0+Y2YRS8/777ys0NFSBgYG69dZbbe5BuWHDBnl6emr16tUmR+m8uAclAAAoFufPn9elS5dUq1YtZWVlafr06dq0aZOaNGmiV155pVxd4gMAAFzX0aNHlZSUpLZt2yo5OVljx461ntPMmDFD9evXNzvEUpPfssjIyFBoaKiqVKlSaB0TJ04s+UCdRGJiov773//qjz/+sPYoDQwMVNeuXfXQQw/Jz8/P5AidFwlKAAAAAAAAAKbhHpQAAKBEZWRk8LRCAADgsmJjY8vkuUxGRobWrFmjefPm6ZdfflFmZqZ1nD332nTkfpyZmZk6evSosrKyJEmpqan6+uuvtXjxYsXGxjoevAtKT08vk9tRcSFBCQAAStTevXsVHBxsdhgAAAAFSkxM1L///W/Vr19fgwcPVlpamkaMGKGgoCAFBwfrtttuU0JCgtlhXrOnn35aP/zwgyTpxIkTatOmjXr16qWXX35ZPXv2VIcOHXTy5ElJUkBAgLp3764vv/xSqampedYXEBCgf/zjHwWWkaRdu3apbt26atKkidq1a6fjx4+rc+fOevTRRzVs2DC1aNFCW7duLf4GO5l9+/ZxTlwAEpQAAAAAAKDce+mll7R9+3Y999xzioqK0oMPPqgNGzbot99+06+//qqzZ89q2rRpZod5zZYsWaIGDRpIksaOHas6deooJiZGMTExOn36tOrXr6/Ro0dLkgzDkKenp4YMGaKgoCA9/fTTioiIsKnPMAx5eXkVWEaSnn/+ed188836888/1b17d4WGhqpFixa6cOGCLly4oN69e+ull14q2cbD6XEPSgAAUCTZT2/Mz8WLF3Xo0CGby4YAAACcTb169bRw4ULdcccdOnXqlOrUqaPly5frn//8pyTpxx9/1NixY3XgwAGTI702Pj4+1l58devW1bfffqsbbrjBOn7Pnj264447dObMGbm5uSkmJkZubm5auHCh5s+frwMHDqh9+/Z67LHHNHDgQFWpUqXQMn5+fqpWrZo2btyoFi1a6OLFi6pcubI2bdpknffevXt12223OXTJuDPinLhoKpgdAAAAcG379u1T//79871kJTo6WocOHSrlqAAAABxz+vRpNW7cWJJUq1Yt+fj4qGnTptbxrVu31vHjx80Kr8iaNm2qLVu2KDg4WJUrV851uXpiYqL1HpHZqlevrrFjx2rs2LEKDw/XJ598ohdeeEHPPfecsvu7FVTmX//6lwzDUIUKl9NPV/+VJHd391zzdUWcExcNPSgBAECRdO7cWUOHDtXw4cPzHB8REaFOnTrx32IAAODUateurRUrVlh7wj300EOaNWuWatasKelyT79u3brp/PnzZoZ5zRYsWKBXX31Vn3/+uY4fP66pU6fq//7v/9SiRQsdPHhQo0aNUpcuXfTxxx/L3d1d0dHR1rbnlJycrMWLF+uxxx5TbGxsgWXmz58vHx8fNWjQQJMnT9a8efP0+eefq1u3bpo/f74kacSIEdq9e7c2bNhQ4sugJHFOXDT0oAQAAEVy88036+DBg/mOr1y5sm699dZSjAgAAMBxbdu21datW60Jyi+//NJm/NatW9WiRQszQisWjzzyiM6fP6/evXvLMAxlZmaqR48e1vH33HOPZs6cKUkqqC9bxYoVNXToUA0bNqzQMkOHDtXWrVvVq1cvffrpp7ruuuv066+/aujQoQoKCpKbm5suXLigFStWFF9DTcI5cdHQgxIAAAAAAJR758+fl5ubm6pUqZLn+J9//lk+Pj66/fbbSzWu4hYXF6c1a9bo6NGjysrKUlBQkG6++WY1adLEWmbhwoXq37+/vLy88q3HnjLZkpOTdeDAATVr1kyVKlXSpUuX9MUXX+jixYu688471axZs2JpG1wXCUoAAAAAAAAApnEzOwAAAODaBg0apMTEROvnP//8U+np6SZGBAAA4Liyfk7jSPvsKWtvfWV9uWYrL+0sKfSgBAAARXL1TdT9/PwUERGhhg0bmhwZAACA/cr6OY0j7bOnrL31lfXlmq28tLOk0IMSAAAUydX/6+R/nwAAwBWV9XMaR9pnT1l76yvryzVbeWlnSSFBCQAAAAAAAMA0FcwOAAAAuL59+/YpJiZG0uX/Fh84cEBJSUk2Zdq2bWtGaAAAAHYr6+c0jrTPnrL2lHF0vq6svLSzJHAPSgAAUCRubm6yWCx5XsaSPdxisSgzM9OE6AAAAOxT1s9pHGmfPWUNw5Cbm1uh9eX8W9h8XVlZ335KGj0oAQBAkURGRpodAgAAQJGV9XMaR9pnT9kTJ06oTp06RQmpTCnr209JowclAAAAAAAAANPwkBwAAFCili5dyr12AACAyyvr5zSOtM+esvbWV9aXa7by0s5rRYISAAAU2Ycffqj7779fDz30kDZv3ixJWrt2rTp06KCHH35YN998s8kRAgAAFK6sn9M40j57ytpbX1lfrtnKSztLhAEAAFAEU6dONTw8PIxOnToZFStWNHx9fY033njDCAwMNKZOnWqcP3/e7BABAAAKVdbPaRxpnz1l7a2vrC/XbOWlnSWFh+QAAIAi+fTTT/Xxxx9r8ODB+u2333Tbbbdp06ZNOnz4sCpWrGh2eAAAAHYp6+c0jrTPnrL21lfWl2u28tLOksJDcgAAQJH4+Pjo0KFDqlu3riTJy8tLmzZtUqdOnUyODAAAwH5l/ZzGkfbZU9be+sr6cs1WXtpZUrgHJQAAKJLU1FR5e3tbP3t6eqpatWomRgQAAOC4sn5O40j77Clrb31lfblmKy/tLClc4g0AAIrs1Vdfla+vryQpLS1Nr7/+uvz9/W3KzJgxw4zQAAAA7FbWz2kcaV9hZQ3DsKs+R+fryspLO0sCl3gDAIAiuf3222WxWAosY7FYtHbt2lKKCAAAwHFl/ZzGkfbZUzYiIkLt27cvtL6srKwyvVyzlfXtp6SRoAQAAMXq7NmzkqTq1aubHAkAAMC1K+vnNI60z56y9tZX1pdrtvLSzuLCPSgBAECRxcXFacSIEapevboCAgIUEBCg6tWra+TIkYqLizM7PAAAALs48znNo48+aterII60z56y9tbnzMu1OJWXdpYEelACAIAiOX/+vLp27aqTJ09q4MCBatGihSRp3759+vLLL1W3bl1t2rRJVatWNTlSAACA/Dn7OY2bm5vq16+vDh06qKBUznfffZfncEfaZ0/ZH3/8Ub169Sq0PsMwnHq5Fhdn336cHQlKAABQJKNHj1ZYWJh++eUXBQQE2IyLiYlRjx491L17d82cOdOkCAEAKBvCw8N17tw5/fOf/7QO++yzzzRx4kQlJyerb9+++r//+z95eXmZGKXrcvZzmhEjRmjRokWqX7++hgwZon//+98OPSXakfbZU9bd3V0ZGRmF1mcYhqnL1c3Nza57Q2ZkZBRpPs6+/Tg7EpQAAKBIGjRooA8//FChoaF5jl+5cqWefPJJHTt2rHQDAwCgjOnVq5duv/12vfDCC5Kk3bt3q2PHjnrkkUfUokUL/ec//9ETTzyhSZMmmRuoiyqJc5q77rpLixYtsj7J+a233tKTTz6pKlWqSJLOnTunbt26ad++fXbVl5qaqqVLl2r+/PnatGmTevfuraFDh6pHjx6FJuEcaZ89Zf/5z3/qxx9/LLQ+SaaeK37//ff5jgsPD9d7772nrKwsXbp0qUjz4Zy4aEhQAgCAIvHy8tKRI0dUp06dPMefOHFCjRs3LvJJHwAA5V1QUJBWrFihzp07S5JefvllrV+/Xr///rskacmSJZo4caLdyS7YKolzGnd3d0VHR6tmzZqSJD8/P0VERKhhw4aSpNjYWNWqVUuZmZkOx/v3339rwYIF+uyzz5SRkaG9e/eqUqVK+ZZ3pH32lK1bt66OHz9eaH2GYTjdueLBgwf14osvasWKFRo4cKCmTJmi+vXrF6lOzomLhofkAACAIqlevXqB/wmOjIx06PIjAACQtwsXLthcOrp+/Xr16tXL+vn666/X8ePHzQitTCiJc5qr+4QVZx+x7EuXDcOwK8HpSPvsKevm5mZXfc50rnjq1CkNGzZMbdq0UUZGhiIiIrRw4cIiJyclzomLigQlAAAoktDQUL388stKS0vLNS41NVWvvvqqevbsaUJkAACULQEBAYqMjJQkpaWlaceOHbrxxhut4xMTE+Xh4WFWeC7PFc5pUlNTtWjRIt15551q2rSpdu/erffff19RUVEF9p6UHGufPWUbNWpkV33OsFzj4+P1wgsvqHHjxtq7d6/CwsK0YsUKtW7dutjm4QztdGVc4g0AAIrkxIkT6ty5s7y8vDRixAg1b95chmFo//79+uCDD5Samqpt27apbt26ZocKAIBLGz58uP78809NmzZNy5Yt08KFC3Xq1Cl5enpKkr744gvNmjVLW7duNTlS11QS5zTu7u6KiYlRjRo1JEmVK1fWrl27FBwcLMmxS7yfeuopLV68WHXr1tWjjz6qgQMHqnr16iXSPnvKrlixQvfcc0+h9VksFlPPFadPn65p06YpMDBQb775pvr06VMi8+GcuGhIUAIAgCKLjIzUU089pdWrV1svXbJYLLrzzjv1/vvvq3HjxiZHCACA6zt79qzuu+8+/f7776pUqZIWLlyoe++91zq+e/fuuvHGG/XGG2+YGKVrK+5zGjc3N/Xq1cv6ZPUVK1boH//4hypWrCjpcs+6lStX2pWgdHNzU7169dShQ4cCH4izdOnSfMc50j57ytpbn5nnim5ubvLx8VFISIjc3d3zLVfQcrMX58TXjgQlAAAoNhcuXNBff/0lSWrcuDH32QEAoATEx8erUqVKuZIt58+fV6VKlaw9KnHtiuucZsiQIXaV+/TTTwst88gjjxT6pG5763KkffaUtbc+M84Vi3O52YtzYseRoAQAAAAAAABgGh6SAwAAAAAAAMA0JCgBAAAAAAAAmIYEJQAAKBGpqamaNGmSUlNTzQ4FAIAyi+/bklUSy7c46yyOuuytozjLmb3dlub8zW6rq+AelAAAoEQkJCTI399f8fHx8vPzMzscAADKJL5vS1ZJLN/irLM46rK3juIsZ/Z2W5rzN7utroIelAAAAAAAAABMQ4ISAAAAAAAAgGkqmB2AM8rMzNShQ4dUqVIlWSwWs8MBAMAlJSYmSpJOnjyphIQEk6MBAKBs4vu2ZJXE8i3OOoujLnvrKM5yZm+3pTl/s9tqJsMwlJSUpKZNm8rd3b3AstyDMg/79+9Xy5YtzQ4DAAAAAAAAcGn79u1TixYtCixDD8o8BAUFSbq8ACtXrmxyNKUvIyNDUVFRcnNzU4UKbCIAAAAAzHEp/ZJOJJxQ3dp15eXhZXY4cEEZWRlKS0+T4iVPD89S/42bkZGhtIw0yV/yrOCpCm6555+RlaEsI0tBFYMUfTK6xH+LF7RfXUq7pBMnTqhuFcf2ubzqvNa67Flmziy/bS4jI0NZWVmqV69eucm1JCYmqmXLltY8W0HKxxJxkJvb5Vtz1q5du1w+YSk9PV1paWny8vKSh4eH2eEAAAAAKKdSUlOUei5VtWvXlq+3r9nhwAWlZ6Yr6WKS5CNV8q1U6r9x09P/N/8qUiXvSvJwzz3/9Mx0pWakqnal2jIyjRL/LV7QfpVyKUWpaamqXcOxfS6vOq+1LnuWmTPLb5tLT09XaurlZVReci3Zl7Rn59kKwkNyAAAAAAAAAJiGBCXKrXfeeUd33nlnqc7z+PHjql27tvbs2VOq8y3vRo8erUcffdTsMAAAAAAAQB5IUJZjiYmJGj16tOrXry8fHx/ddNNN2rp1q02ZM2fOaPTo0erYsaMaNWqkgQMH6ujRowXWe//996t27dq5Xg8//LC1TF7ja9eurTlz5kiSUlNT9fTTT6tZs2a65ZZbtGHDBpt5zJkzR6+88kqR2v/kk0/qq6++sn4miSWtWLFCt956qxo2bKju3bsrLCzMlDg2bdqk2rVrKz4+3qHp8ksAT5kyRTNnzizOEAEAAAAAuGZTp07V9ddfr8qVK6tmzZrq27evDh48aFPmyJEjuvfee1WjRg35+fnpwQcfVGxsrHX8unXrZLFY8nxdnd+RpMOHD6ty5cqqUqWKzfCPP/5Y3bp1U9WqVVW1alWFhIRoy5YtJdLu/JCgLMcee+wxrVmzRp9//rl2796tHj16KCQkRCdPnpR0+XHwjz76qKKiojR//nytWrVKtWvXVv/+/ZWSkpJvvR9//LF27txpfa1du1bu7u765z//aS2Tc/zOnTs1Y8YMWSwW3XXXXZKkL774Qrt379by5cv173//WyNHjlT2A+ejoqL0xRdf6IUXXihS+ytWrKhq1aoVqY6yZOvWrRoxYoQGDBigVatWKTQ0VEOHDtWBAwfMDq3I/Pz85O/vb3YYAAAAAABIktavX68RI0bojz/+0Jo1a5Senq4ePXooOTlZkpScnKwePXrIYrFo7dq12rhxo9LS0nT33XcrKytLknTTTTcpOjra5vXYY48pODhYnTt3tplfenq6BgwYoG7duuWKZd26dRowYIB+/fVXhYeHq27duurRo4c1P1QaSFCWUxcvXtS3336r6dOn69Zbb1Xjxo01adIkNW7cWB9++KEkKTIyUjt27NDUqVPVvn17NW7cWG+99ZYuXbqkZcuW5Vt31apVVbNmTetrw4YN8vHx0d13320tk3N8zZo1tWrVKt10002qX7++JOmvv/5Sjx491KxZMw0ePFjnzp3T+fPnJUnjx4/Xyy+/bNcT1jdt2qTevXurcePGatGihfr06aMTJ05Isr3E+5133tGSJUusSdjatWtr06ZNkqSTJ0/qiSeeUIsWLdSqVSsNGTJEx48ft2se+YmKitL999+vRo0aKSQkRNu2bbOOO3/+vJ566il16tRJjRo1Uvfu3W2W93//+1917NjRekDKNmTIEI0ZM8b6OTvJ2LBhQ3Xt2lUzZsxQRkZGvjHNmzdPt99+u4YPH64mTZro+eefV+vWrfXpp5/mO032Mly8eLGuv/56NWnSROPHj1dmZqY++OADtW/fXm3bttW7775rnSavXo7x8fHWZX78+HE98MADkqSWLVuqdu3aGj16tCTp119/Vd++fa3rYtCgQTp27Ji1nhtvvFGSFBoaqtq1a+v++++XlLt3bGpqql599VW1bdtWDRs2VN++fRUREWEdn92D87ffflOvXr3UqFEj3XPPPTp8+LC1zN69e3X//feradOmatasmXr27Kk///wz32UFAAAAAEC2lStX6pFHHlGrVq3Url07LViwQFFRUdq+fbskaePGjTp27JgWLFigNm3aqE2bNlq4cKG2bdumtWvXSpI8PT0VGBhofV133XX6/vvvNWTIEFksFpv5vfLKK2revLkefPDBXLF88cUXeuqpp9S+fXs1b95cn3zyibKyskr1qkoSlOVURkaGMjMz5e3tbTPcx8fHmphLS0uTJHl5eVnHu7m5ydPT06GuvosXL1afPn3k65v3U7vOnDmjsLAwDRgwwDqsZcuW2rJliy5evKj169crICBA1apV09KlS+Xl5aVevXrZ1cahQ4fqxhtv1C+//KLly5dr4MCBuXZS6fLl3nfffbfuuOMOa6/Ozp07Kz09XQMHDlSlSpW0dOlSLVu2TBUrVtTAgQOVlpbm0DxymjZtmp588kmtXr1aDRs21IgRI6zJw9TUVLVt21YLFy7U2rVrNXDgQD3zzDPauXOnJOmf//ynLly4oI0bN1rru3DhgtatW6d7771XkrR582aNGjVKQ4cO1a+//qpp06bp66+/1nvvvZdvTNu3b8/1n5Tbb7/denDMz99//621a9fqiy++0OzZs7V48WINGjRI0dHR+uabb/Tyyy9r+vTp2rFjR4H1ZKtVq5Y+/vhjSdKGDRu0c+dOTZkyRZKUkpKixx9/XD/99JO++uorubm56bHHHrMma3/88UdJl7e5nTt3Wuu52htvvKGffvpJs2bN0sqVK9WgQQMNHDhQFy5csCk3bdo0TZgwQT///LMqVKigsWPHWsc9/fTTCgoK0k8//aSff/5ZI0aMUIUKFexqIwAAAAAAOWXf4iz7Ss/U1FRZLBabnIy3t7fc3Nz0+++/51nH8uXLde7cOQ0ZMsRm+Nq1a7VkyRLNnj3brlhSUlKUnp5eqled8mu6nKpcubK6du2q1157TS1atFBAQIAWLVqk8PBwNWrUSJLUqFEj1a5dW1OnTtW0adPk6+urjz/+WNHR0Tp9+rRd89m5c6cOHDigt99+O98yS5YsUaVKlWySjv3799f+/ft1xx13qFq1apo7d67i4uL09ttva8mSJZo2bZqWL1+u+vXr65133lFQUFCuehMTE5WQkKCQkBA1aNBAktSkSZM8Y6hYsaK8vb2VlpammjVrWod/++23ysrK0ttvv21NOs6YMUMtWrRQeHi42rZta/c8cnryyScVEhIiSXruued0xx136NixY2rcuLGCgoL05JNPWss++uijWrdunVasWKEOHTqoSpUquuOOO7Rs2TJrQvHHH39UtWrVdPPNN1tjHDFihPU/I/Xr19e4ceP0xhtv2PSyzOnMmTOqUaOGzbDq1avrzJkzBbYlKytLM2bMUKVKldS0aVPddNNNOnLkiD7//HO5ubmpcePGmj17tjZt2qSOHTsWumzc3d2t98OoXr26zaXZvXv3tik7Y8YMtWnTRocOHVLz5s113XXXSbrSizcvKSkp+uyzzzRz5kz94x//kCT95z//0Y033qjFixdr+PDh1rIvvPCCunbtKkkaMWKEBg0apEuXLsnb21snT57Uk08+qcaNG0uSGjZsWGjbAAAAAAC4WlZWlkaPHq2bb75ZrVu3lnT5CsGKFSvqhRde0JtvvinDMPTiiy8qMzNT0dHRedYzb948hYaGqk6dOtZh586d0yOPPKL//ve/8vPzsyueF154QbVq1bLmLUqDqT0o7bkhaF6WLFmi5s2by9vbW23atNFPP/1kM94wDE2YMEFBQUHy8fFRSEiI/vrrr5Jqhsv6/PPPZRiGateuLS8vL7333nsaMGCA3NwubxYeHh765JNPdPToUbVq1UqNGzfWpk2b9I9//MNapjCLFi1SixYt1KFDh3zLLF68WPfee69Nb04PDw+9+eab+uOPP/TTTz/phhtu0JQpU/Too49q7969WrVqldasWaOOHTtqwoQJedZbtWpVPfjggxo4cKAGDx6sTz75xOZmsvbYt2+fjh07pqZNm6pJkyZq0qSJWrVqpdTUVB07duya59GiRQvr++xE2tmzZyVJmZmZmjlzprp3765WrVqpSZMmWr9+vc29H+6991799NNPSk1NlSR99913uueee6zrZd++fZo1a5Y15uxLtmNjY3Xx4kWHlkFh6tatq0qVKlk/V69eXU2aNLHZRmrUqGFtX1EcPXpUTz31lLp27apmzZqpS5cukuTQfTGOHTum9PR0XX/99dZhHh4eat++fa7jRMuWLa3vAwICJF0+uEvS448/rnHjxqlfv356//33bS41BwAAAADAXiNGjNCePXu0ePFi67AaNWpoyZIlWrFihSpVqiR/f3/FxcWpY8eOeeZkTpw4oVWrVmno0KE2w4cNG6aHHnpIt956q12xvPXWW1q8eLG+++67XFfdliRTE5SF3RA0L5s2bdKAAQM0dOhQ7dy5U3379lXfvn1t7mc3ffp0vffee5o7d642b96sihUrKjQ0VJcuXSqNZrmMRo0aaf369UpKStLx48e1ZcsWpaen2/QEa9u2rdasWaP9+/dr586d+uKLL3ThwgXVq1ev0PpTUlK0fPly9e/fP98ymzdv1pEjR2wu787Lxo0bdejQIQ0ZMsSaJPX19dXdd99tvSQ9LzNnztTy5cvVuXNnLV++XN26dSv0kuWckpOT1bZtW61evdrm9dtvv1kvp76WeeS8FDi7Z2b2Zcpz5szRvHnz9NRTT+nrr7/W6tWrddtttyk9Pd06zZ133inDMBQWFqaTJ09q8+bNuu+++6zjU1JSNHbsWJuYf/nlF/3+++823cNzqlGjRq7ekmfPns3Vq7KgtmS3x8PDI9ew7PbldSAt6N6YOT3yyCOKi4vT9OnT9cMPP+iHH36QJJtlU5zyumQ7ux1jx47V2rVr1b17d23cuFF33HGHfv755xKJAwAAAABQNo0cOVI//PCDfv31V5uej5LUo0cPHTlyRKdPn9bZs2f1+eef6+TJk3lewffpp5/quuuu0z333GMzfO3atXr77bdVoUIFVahQQUOHDlV8fLwqVKig+fPn25R9++239dZbb2n16tVq27Zt8Te2AKYmKAu7IWhe3n33XfXs2VPjxo1TixYt9Nprr6ljx456//33JV3uPTlr1iy98sor6tOnj9q2bavPPvtMp06dKvDBLuVZxYoVFRQUpAsXLmjVqlU2D7PJ5ufnp+uuu05Hjx7Vn3/+qdDQ0ELrXbFihdLS0mwSZ1dbtGiR2rZtq1atWuVb5tKlS3r55Zc1bdo0ubu7Kysry5qQSk9Pz/WwmKu1bt1aTz/9tJYvX65mzZrlux14enoqMzPTZlibNm0UGRmp6tWrKzg42OaVs2u0vfOwx9atWxUaGqp//etfatWqlerXr6+jR4/alPH29lavXr303Xff6fvvv1ejRo3Upk0bm3iOHDmSK+bg4OB8e7926tQp130sNmzYoE6dOl1zW/KSfQ+LnD1N9+7da1MmO8GZc32cP39eR44c0ahRo9StWzc1adLEeo+Oq6craJto0KCBPD09tXXrVuuw9PR0RUREqGnTpg61pVGjRnr88ce1aNEi9erVS1999ZVD0wMAAAAAypeLaZmKOB6nrKwsjRw5Ut99953Wrl2r4ODgfKepXr26qlSporVr1+r06dO5kpCGYejTTz/VoEGDcnUYCg8PV0REhPU1ZcoUVa5cWREREdaOV9Llzn6vvfaaVq5cmesJ4KXBqe5BefUNQfMSHh6e6x56oaGh1oRQZGSkYmJibK6T9/f3V5cuXRQeHp5nb77U1FTrpbKSlJCQUJRmuIxVq1bJMAw1a9ZMhw8f1rhx49S8eXMNHjzY+hTqFStW6LrrrlPt2rV14MABTZgwQT179tRtt91mreeZZ55RUFCQxo8fb1P/4sWLFRoamu/6TExM1A8//JDvJdrZZs2apX/84x/W+zB07txZr7/+uvr166cFCxbku+NERUXpiy++0J133qnAwEAdOXJEkZGR1ic7X61OnTpat26dDh8+rGrVqqly5cq67777NGfOHA0ZMkTjxo1TUFCQTpw4oZ9//lnDhw9XRkaGQ/OwR3BwsH788Udt3bpVVapU0UcffaSzZ8/mSp7de++9euSRR3Tw4MFcSeBnn31WgwcPVu3atdW7d2+5ublp3759OnDggF544YU85zt06FDdf//9mjt3rkJCQvT9999r165dmj59+jW3JS8+Pj7q2LGjZs+erXr16uns2bO55lGnTh1ZLBb98ssv6t69u7y9vVWlShVVrVpV//3vf1WzZk2dPHlSU6dOtZmuevXq8vb21q+//qqgoCB5eXnluseGr6+vHn74Yb3++uuqUqWKateurQ8++ECXLl0qsLdvThcvXtTrr7+u3r17q169eoqOjtaff/6pu+66q2gLBwAAAABQpg1asE0Rx+PV5K/F2hq2Qt9//70qV66smJgYSZdzWD4+PpIu94ps0aKFatSoofDwcI0aNUrPPvusmjVrZlPn2rVrFRkZqcceeyzX/HLeYk6Stm3bJjc3N2uORbrygNgvv/xSDRo0sMZSqVIlm1u6lSSnSVDmdUPQvMTExFjvBZctICDAuvCy/xZU5mpTp07V5MmTixK+S4qPj9f48eN14sQJVatWTf/617/0xhtv2GTbT58+rcmTJ+vs2bOqWbOm7r//fo0ePdqmnlOnTuXqlXf48GFt2bJFixYtynf+33//vQzDUN++ffMtc+DAAa1YsUJr1qyxDvvnP/+p8PBw3XfffWrUqJG19+zVfHx8dPjwYS1ZskQXLlxQzZo19cgjj+jhhx/Os/zAgQMVHh6uu+66S8nJyVqyZIluuukmLV26VG+88YYee+wxJScnKzAwULfccosqV66sS5cuOTQPe4waNUpRUVEaOHCgfHx8NHDgQIWGhioxMdGm3C233KIqVaroyJEjNv/1kC4/fXvhwoWaOXOmZs+eLQ8PDzVu3LjAS+mvv/56vf/++5o+fbqmTZum4OBgzZs3T82bN7/mtuRnxowZGjt2rHr27KlGjRrplVdesYktKChIY8eO1dSpUzVmzBjdf//9mjVrlj744ANNmDBB3bt3V8OGDfXaa6/ZJIMrVKig1157TTNnztTbb7+tLl266Jtvvsk1/5deekmGYeiZZ56xXsb/xRdfWB/OUxh3d3dduHBBo0aN0tmzZ1WtWjX16tXL5infAAAAAABcLeL45c55vyz9r6TLv99z+vTTT/XII49Ikg4ePKjx48fr/PnzatCggV5++WU9++yzueqcN2+ebrrppmv+/T5nzhylpaXl6mw1ceJETZo06ZrqdJTFMAyjVOZUiOHDh+vnn3/W77//nuua+5w8PT21cOFCm2TGBx98oMmTJys2NlabNm3SzTffrFOnTtk82fnBBx+UxWLJ8xLMvHpQ1q1bV/Hx8XY/4agsSU9PV2RkpLy8vHJ1DQYAAACA0pKSmqIj546oUf1G8vX2NTscuKD0zHQlXUyS4qRKvpVK/Tduevr/5l9FquRdSR7uueefnpmu1IxU1alURyeiTpT4b/GC9quUSyk6cvSIGtVwbJ/Lq85rrcueZebM8tvm0tPTlZqaqh7zLz+ctV3dKvp+xM0mRlryEhIS5O/vb1d+zSl6UGbfEHTDhg0FJiclKTAwMNdTkmNjYxUYGGgdnz0sZ4IyNjZW7du3z7NOLy+vfB8cAgAAAAAAAKDkmPqQHMMw7L4haLauXbsqLCzMZtiaNWvUtWtXSZfv3xcYGGhTJiEhQZs3b7aWAQAAAAAAAOAcTO1BOWLECH355ZcF3hB00KBBql27tvVhGKNGjdJtt92md955R71799bixYu1bds2ffTRR5Iki8Wi0aNH6/XXX1eTJk0UHBysV199VbVq1SrwXocAAAAAAAAASp+pCco5c+ZIKviGoFFRUTYPYLnpppv05Zdf6pVXXtFLL72kJk2aaNmyZTYP1nn++eeVnJysxx9/XHFxcbrlllu0cuVKeXt7l3ibAAAAAAAAANjP1ASlPc/nWbduXa5hDzzwgB544IF8p7FYLJoyZYqmTJlSlPAAAAAAAAAAlDBT70EJAAAAAAAAoHwjQQkAAAAAAADANCQoAQAAAAAAAJiGBCUAAAAAAAAA05CgBAAAAAAAAGAaEpQAAAAAAAAATEOCEgAAAAAAAChNhmF2BE6FBCUAAAAAAAAA05CgBAAAAAAAAGAaEpQAAAAAAAAATEOCEgAAAAAAAIBpSFACAAAAAAAAMA0JSgAAAAAAAACmIUEJAAAAAAAAwDQkKAEAAAAAAACYhgQlAAAAAAAAANOQoAQAAAAAAABgGhKUAAAAAAAAAExDghIAAAAAAACAaUhQAgAAAAAAADANCUoAAAAAAAAApiFBCQAAAAAAAMA0JCgBAAAAAAAAmIYEJQAAAAAAAADTmJqg3LBhg+6++27VqlVLFotFy5YtK7D8I488IovFkuvVqlUra5lJkyblGt+8efMSbgkAAAAAAACAa2FqgjI5OVnt2rXT7Nmz7Sr/7rvvKjo62vo6fvy4qlWrpgceeMCmXKtWrWzK/f777yURPgAAAAAAAIAiqmDmzHv16qVevXrZXd7f31/+/v7Wz8uWLdOFCxc0ZMgQm3IVKlRQYGBgscUJAAAAAAAAoGS49D0o582bp5CQENWvX99m+F9//aVatWqpYcOGGjhwoKKiogqsJzU1VQkJCTYvAAAAAAAAACXPZROUp06d0s8//6zHHnvMZniXLl20YMECrVy5UnPmzFFkZKS6deumxMTEfOuaOnWqtXemv7+/6tatW9LhAwAAAAAAAJALJygXLlyoKlWqqG/fvjbDe/XqpQceeEBt27ZVaGiofvrpJ8XFxenrr7/Ot67x48crPj7e+jp+/HgJRw8AAAAAAABAMvkelNfKMAzNnz9fDz/8sDw9PQssW6VKFTVt2lSHDx/Ot4yXl5e8vLyKO0wAAAAAAAAAhXDJHpTr16/X4cOHNXTo0ELLJiUl6ciRIwoKCiqFyAAAAAAAAAA4wtQEZVJSkiIiIhQRESFJioyMVEREhPWhNuPHj9egQYNyTTdv3jx16dJFrVu3zjXuueee0/r163Xs2DFt2rRJ9957r9zd3TVgwIASbQsAAAAAAAAAx5l6ife2bdt0xx13WD+PGTNGkjR48GAtWLBA0dHRuZ7AHR8fr2+//VbvvvtunnWeOHFCAwYM0Llz51SjRg3dcsst+uOPP1SjRo2SawgAAAAAAACAa2JqgvL222+XYRj5jl+wYEGuYf7+/kpJScl3msWLFxdHaAAAAAAAAECJyD8bVj655D0oAQAAAAAAAJQNJCgBAAAAAAAAmIYEJQAAAAAAAADTkKAEAAAAAAAAYBoSlAAAAAAAAABMQ4ISAAAAAAAAgGlIUAIAAAAAAAAwDQlKAAAAAAAAAKYhQQkAAAAAAADANCQoAQAAAAAAAJiGBCUAAAAAAAAA05CgBAAAAAAAAGAaEpQAAAAAAAAATEOCEgAAAAAAAIBpSFACAAAAAAAAMA0JSgAAAAAAAACmIUEJAAAAAAAAwDQkKAEAAAAAAACYhgQlAAAAAAAAANOQoAQAAAAAAABgGhKUAAAAAAAAAExDghIAAAAAAACAaUhQAgAAAAAAADANCUoAAAAAAAAApjE1QblhwwbdfffdqlWrliwWi5YtW1Zg+XXr1sliseR6xcTE2JSbPXu2GjRoIG9vb3Xp0kVbtmwpwVYAAAAAAAAAuFamJiiTk5PVrl07zZ4926HpDh48qOjoaOurZs2a1nFfffWVxowZo4kTJ2rHjh1q166dQkNDdfr06eIOHwAAAAAAAEARVXB0gosXL8owDPn6+kqS/v77b3333Xdq2bKlevTo4VBdvXr1Uq9evRwNQTVr1lSVKlXyHDdjxgwNGzZMQ4YMkSTNnTtXP/74o+bPn68XX3zR4XkBAAAAAAAAKDkO96Ds06ePPvvsM0lSXFycunTponfeeUd9+vTRnDlzij3AvLRv315BQUG68847tXHjRuvwtLQ0bd++XSEhIdZhbm5uCgkJUXh4eL71paamKiEhweYFAAAAAAAAlATDMDsC5+JwgnLHjh3q1q2bJOmbb75RQECA/v77b3322Wd67733ij3AnIKCgjR37lx9++23+vbbb1W3bl3dfvvt2rFjhyTp7NmzyszMVEBAgM10AQEBue5TmdPUqVPl7+9vfdWtW7dE2wEAAAAAAADgMocv8U5JSVHlypUlSatXr9Z9990nNzc33Xjjjfr777+LPcCcmjVrpmbNmlk/33TTTTpy5Ihmzpypzz///JrrHT9+vMaMGWP9nJCQQJISAAAAAAAAKAUO96Bs3Lixli1bpuPHj2vVqlXW+06ePn1afn5+xR5gYW644QYdPnxYklS9enW5u7srNjbWpkxsbKwCAwPzrcPLy0t+fn42LwAAAAAAAAAlz+EE5YQJE/Tcc8+pQYMG6tKli7p27Srpcm/KDh06FHuAhYmIiFBQUJAkydPTU506dVJYWJh1fFZWlsLCwqxxAgAAAAAAAHAeDl/iff/99+uWW25RdHS02rVrZx3evXt33XvvvQ7VlZSUZO39KEmRkZGKiIhQtWrVVK9ePY0fP14nT560PpRn1qxZCg4OVqtWrXTp0iV98sknWrt2rVavXm2tY8yYMRo8eLA6d+6sG264QbNmzVJycrL1qd4AAAAAAAAAnIfDCUpJCgwMzHXJ9A033OBwPdu2bdMdd9xh/Zx9H8jBgwdrwYIFio6OVlRUlHV8Wlqaxo4dq5MnT8rX11dt27bVL7/8YlNHv379dObMGU2YMEExMTFq3769Vq5cmevBOQAAAAAAAADM53CCMjk5WW+99ZbCwsJ0+vRpZWVl2Yw/evSo3XXdfvvtMgp4rvqCBQtsPj///PN6/vnnC6135MiRGjlypN1xAAAAAAAAADCHwwnKxx57TOvXr9fDDz+soKAgWSyWkogLAAAAAAAAQDngcILy559/1o8//qibb765JOIBAAAAAAAAUI44/BTvqlWrqlq1aiURCwAAAAAAAIByxuEE5WuvvaYJEyYoJSWlJOIBAAAAAAAAUI44fIn3O++8oyNHjiggIEANGjSQh4eHzfgdO3YUW3AAAAAAAAAAyjaHE5R9+/YtgTAAAAAAAAAAlEcOJygnTpxYEnEAAAAAAAAAKIccTlBm2759u/bv3y9JatWqlTp06FBsQQEAAAAAAAAoHxxOUJ4+fVr9+/fXunXrVKVKFUlSXFyc7rjjDi1evFg1atQo7hgBAAAAAAAAlFEOP8X76aefVmJiovbu3avz58/r/Pnz2rNnjxISEvTMM8+URIwAAAAAAAAAyiiHe1CuXLlSv/zyi1q0aGEd1rJlS82ePVs9evQo1uAAAAAAAAAAlG0O96DMysqSh4dHruEeHh7KysoqlqAAAAAAAAAAlA8OJyj/8Y9/aNSoUTp16pR12MmTJ/Xss8+qe/fuxRocAAAAAAAAgLLN4QTl+++/r4SEBDVo0ECNGjVSo0aNFBwcrISEBP3f//1fScQIAAAAAAAAoIxy+B6UdevW1Y4dO/TLL7/owIEDkqQWLVooJCSk2IMDAAAAAAAAULY5nKCUJIvFojvvvFN33nlncccDAAAAAAAAoByxK0H53nvv6fHHH5e3t7fee++9Ass+88wzxRIYAAAAAAAAgLLPrgTlzJkzNXDgQHl7e2vmzJn5lrNYLCQoAQAAAAAAANjNrgRlZGRknu8BAAAAAAAAoCgcfor3lClTlJKSkmv4xYsXNWXKlGIJCgAAAAAAAED54HCCcvLkyUpKSso1PCUlRZMnTy6WoAAAAAAAAICyypBhdghOxeEEpWEYslgsuYb/+eefqlatWrEEBQAAAAAAAKB8sOselJJUtWpVWSwWWSwWNW3a1CZJmZmZqaSkJD355JMlEiQAAAAAAACAssnuBOWsWbNkGIYeffRRTZ48Wf7+/tZxnp6eatCggbp27VoiQQIAAAAAAAAom+xOUA4ePFiSFBwcrJtuukkeHh5FnvmGDRv0n//8R9u3b1d0dLS+++479e3bN9/yS5cu1Zw5cxQREaHU1FS1atVKkyZNUmhoqLXMpEmTct0Ls1mzZjpw4ECR4wUAAAAAAABQvBy+B+Vtt91mTU5eunRJCQkJNi9HJCcnq127dpo9e7Zd5Tds2KA777xTP/30k7Zv36477rhDd999t3bu3GlTrlWrVoqOjra+fv/9d4fiAgAAAAAAAFA67O5BmS0lJUXPP/+8vv76a507dy7X+MzMTLvr6tWrl3r16mV3+VmzZtl8fvPNN/X9999rxYoV6tChg3V4hQoVFBgYaHe9AAAAAAAAAMzhcA/KcePGae3atZozZ468vLz0ySefaPLkyapVq5Y+++yzkogxX1lZWUpMTMz19PC//vpLtWrVUsOGDTVw4EBFRUUVWE9qamqReoICAAAAAAAAuDYOJyhXrFihDz74QP/6179UoUIFdevWTa+88orefPNNffHFFyURY77efvttJSUl6cEHH7QO69KlixYsWKCVK1dqzpw5ioyMVLdu3ZSYmJhvPVOnTpW/v7/1Vbdu3dIIHwAAAAAAACj3HE5Qnj9/Xg0bNpQk+fn56fz585KkW265RRs2bCje6Arw5ZdfavLkyfr6669Vs2ZN6/BevXrpgQceUNu2bRUaGqqffvpJcXFx+vrrr/Ota/z48YqPj7e+jh8/XhpNAAAAAAAAAMo9hxOUDRs2VGRkpCSpefPm1sTfihUrVKVKlWINLj+LFy/WY489pq+//lohISEFlq1SpYqaNm2qw4cP51vGy8tLfn5+Ni8AAAAAAAAAJc/hBOWQIUP0559/SpJefPFFzZ49W97e3nr22Wc1bty4Yg/waosWLdKQIUO0aNEi9e7du9DySUlJOnLkiIKCgko8NgAAAAAAAACOcfgp3s8++6z1fUhIiA4cOKDt27ercePGatu2rUN1JSUl2fRsjIyMVEREhKpVq6Z69epp/PjxOnnypPXhO19++aUGDx6sd999V126dFFMTIwkycfHR/7+/pKk5557Tnfffbfq16+vU6dOaeLEiXJ3d9eAAQMcbSoAAAAAAACAEuZwD8rPPvtMqamp1s/169fXfffdp+bNmzv8FO9t27apQ4cO6tChgyRpzJgx6tChgyZMmCBJio6OtnkC90cffaSMjAyNGDFCQUFB1teoUaOsZU6cOKEBAwaoWbNmevDBB3Xdddfpjz/+UI0aNRxtKgAAAAAAAIAS5nAPyiFDhqhnz542D6aRpMTERA0ZMkSDBg2yu67bb79dhmHkO37BggU2n9etW1donYsXL7Z7/gAAAAAAAADM5XAPSsMwZLFYcg0/ceKE9TJrAAAAAAAAALCH3T0oO3ToIIvFIovFou7du6tChSuTZmZmKjIyUj179iyRIAEAAAAAAACUTXYnKPv27StJioiIUGhoqCpVqmQd5+npqQYNGuhf//pXsQcIAAAAAAAAoOyyO0E5ceJESVKDBg3Ur18/eXt7l1hQAAAAAAAAAMoHhx+SM3jw4JKIAwAAAAAAAEA55HCC0s3NLc+H5GTLzMwsUkAAAAAAAAAAyg+HE5RLly61SVCmp6dr586dWrhwoSZPnlyswQEAAAAAAAAo2xxOUGY/LCen+++/X61atdJXX32loUOHFkdcAAAAAAAAAMoBt+Kq6MYbb1RYWFhxVQcAAAAAAACgHCiWBOXFixf13nvvqXbt2sVRHQAAAAAAAIBywuFLvKtWrWpzD0rDMJSYmChfX1/997//LdbgAAAAAAAAAJRtDicoZ82aZfPZzc1NNWrUUJcuXVS1atXiigsAAAAAAABAOeBwgnLw4MElEQcAAAAAAACAcsjhBKUkXbp0Sbt27dLp06eVlZVlM+6ee+4plsAAAAAAAACAssgwzI7AuTicoFy5cqUefvhhnTt3Ltc4i8WizMzMYgkMAAAAAAAAQNnn8FO8n376aT344IOKjo5WVlaWzYvkJAAAAAAAAABHOJygjI2N1ZgxYxQQEFAS8QAAAAAAAAAoRxxOUN5///1at25dCYQCAAAAAAAAoLxx+B6U77//vh544AH99ttvatOmjTw8PGzGP/PMM8UWHAAAAAAAAICyzeEE5aJFi7R69Wp5e3tr3bp1slgs1nEWi4UEJQAAAAAAAAC7OZygfPnllzV58mS9+OKLcnNz+ApxAAAAAAAAALByOMOYlpamfv36kZwEAAAAAAAAUGQOZxkHDx6sr776qiRiAQAAAAAAAFDOOHyJd2ZmpqZPn65Vq1apbdu2uR6SM2PGjGILDgAAAAAAAEDZ5nAPyt27d6tDhw5yc3PTnj17tHPnTusrIiLCobo2bNigu+++W7Vq1ZLFYtGyZcsKnWbdunXq2LGjvLy81LhxYy1YsCBXmdmzZ6tBgwby9vZWly5dtGXLFofiAgAAAAAAAFA6HO5B+euvvxbbzJOTk9WuXTs9+uijuu+++wotHxkZqd69e+vJJ5/UF198obCwMD322GMKCgpSaGioJOmrr77SmDFjNHfuXHXp0kWzZs1SaGioDh48qJo1axZb7AAAAAAAAACKztQn3fTq1Uuvv/667r33XrvKz507V8HBwXrnnXfUokULjRw5Uvfff79mzpxpLTNjxgwNGzZMQ4YMUcuWLTV37lz5+vpq/vz5JdWMMuOHXae07dh57Y9O1OmkdJ2MTy32eZxNTtffFy5Jko7HXdKZpLQCy8dfzNCRsxfzHR+TmJYrTsMwdOB0ipLTMgusOyPT0J7oZGVkGXZGn79T8amKTsi7LTtOJGrHiURrvCfiir5ctx+/Ume29Mws7YlOVmYxtOdqkecuasOROKVmZBV73fbKyPrf+sp0rH3Z06Vn5h27YRjaF5OsS+nmtc1eSamZOng6xewwyg17jlFFdSIuVcfOX9KB0ykyjGvbd6Mu5I6zsO3eFSWnZWp/rGPLyZX276PnLup8SrrZYZSouIsZOnIu/+/0giRcytBfZy4f/1IzsrQ3JllZ17jPSNKx85ecbnkXds5TEnIu16sdOpOixNQM6+fMUjquZBmX55Nm4jlHeZTzHN1VHI69qPiUDJthaRlZ2nOyaMcHZ3MwJkWJlzJyDT+bmK6/z5XcOouOS9UpB3+3HIxOUdKlgn+DlZTMLEN7TjrPuc/JAn4fXkhO19EzeR/vDcPQobOX8v0teyEl3a7v0oRLGTpcwHdKRqaho+eMPH87nopL07mUkt+Hcv62OXQmRQl5bOfXKjUjS3vzOBbsPpGsP44kaM/J5AJ/2x45fVFxKXnHYxiGDkSnKDnVdh0lXcrUwZj8f6tlGYb2xaaY+pva2Tncg9JM4eHhCgkJsRkWGhqq0aNHS7r8hPHt27dr/Pjx1vFubm4KCQlReHh4vvWmpqYqNfXKwTchIaF4A3cBP++O1sgvd+YavubJtqro6V5s87ln3h5J0n8HNte/vzggSdr0TId8y9/18W4ZkhYOaKYmNXxtxmUZhu77dK8k6Zcn28r3f3FuOBqv8T9Gqo6/l74e3DLfut9Zf1zf7zmn+9tW15jb615zm1IzsnT/wn2X5z2ivSq4W6zjzqeka+TSw5KkHx5rbY23KMv1wOkUPf3d5To/7d9MzWpeXi5v/BKl1Qcv6OFOARp+c61rbs/VYhPTNPB/6+r6upX17r2Ni61uR7y34YS+2XVW97S6Ti92r2f3dHM3ndKXO06rZ/OqmtCjQa7x3+89p+lrj6tNUEV9+EDTYoy4+PX/fJ/Op2TovXsbq3PdymaHU6bFXcxQv8/2Syr4GFUUCZcy9OBn+6yf/3N3Q90c7O9QHRdS0tX/89xxfrjplL4oYLt3RUMXH1RUXKrevCtYtzeuYtc03+0+q7fXnVC7WhU1537n3b+Px12y6zvR1d318W5Jl88BGl7n49C09366VxfTs/ThA001f3O0NkclasTNtTSwU4DDccQkpumh/5bs/n0tCjrnKSnZy/WjB5qqdVBF6/CdJ5M04tu/VNnLXaueaCtJ+ig8Wp9vj1WPZlU1KbRBicX02bZYfRQerVuC/TX97oYlNh/Yyj5HXzG0ta6r6FFIafMdjE7RkPkH5W6Rfnvpyn786nfH9NuheA27LUhDbgk0McLisePvRI3872H5+7jr5zFtbcbd897ldfb9M61Vo3LxrrOMTEP/mn35HOXXF9rJq0Lh/Zo2H03Qs4uOqHolDy0f1bpY47HHR+uj9fmmWPVoXVWT+jQo9fnndCk9Sw9k/z4c2T7X+N6zLq+7xU+2UL3rvG3GrTt0TiOXH1dgZQ8tHZJ7Ofb+5PK0X/67hRpU8841Ptvdn+xRepahef2aqUVA7u+U9zfF6od9mdp//rRe/GewdfjFtEwNmhcpSVr1WMkmKR/8bJ/iLmZo2I1B+viPaPl6uOmX4e2Kpe6XvolU+JEEPfWPWvp318vnCrtPJOmJhX9Zy3RpWFkzB+T+bXvk9EU9/PH/zstezn2esOFQvMZ/E6k6Vb309VNX8g395+7T+eQMvfdQY7Wrl3vdfPPnGc3acFLtgq6cA5Wh/6UUC1N7UDoqJiZGAQG2J6IBAQFKSEjQxYsXdfbsWWVmZuZZJiYmJt96p06dKn9/f+urbt1rT1a5qg83HM1zeEn1LvjtaLxd5bL31+0nknKNy9mT7nyO/278cuiCJOlEIT1Av99zTpL0za6zdsWSn7iLV+Z96ar/hkRduBLDsfNX/sNZlOW65e8rCfRtx6/0olx98HK7v9gRe8115+WvHP/d23o8sYCSJSt7PS3fe86h6b7ccVqStPLAhTzHL//fdrA7OrkI0ZWO7O18w5E4cwMpB44XQ0/nwlz9X/W1f8U5XEd+cX5RyHbviqL+19Y1h+xvU/Zx/s9Tzr1/u8LxpzhFnMz9nV6Yi//rBRt+LF6boy5/F32z68w1zd9Ze6IXdM5TUrKX6x9/2/5zfmPk5fO0xBy9Qz7ffvn8Ivt8o6R8vfPyev090r5zRRSvnOerzmxL5OXjwNUX1vx26PJ289WW06UdUonIbk/8xfx7JUbm0xOvKFJy9N5LLGDeOa07ECdJOptkTu/0zzf97xi1x/xznws5fh8W1KNzz8nc3/8r917edmMSC16OhZ07pP+vZ+TWqLw7X/2w7/K2tfzPOJvhF3L8rk5z8Mo1R2X/jv74j2hJUkoxXvESfuRyu7/ZeuVcYeNftsti89G8f9vu+Lvg7+Ff9v4v33DB9jz8fPL/fqsdistzuu92X/49+2f0lX3WYsmzaLnlUgnKkjJ+/HjFx8dbX8ePHzc7JAAAAAAAAKBcsCtB2bFjR124cDlLPGXKFKWkmPOf58DAQMXG2vYOi42NlZ+fn3x8fFS9enW5u7vnWSYwMP8u/l5eXvLz87N5AQAAAAAAACh5diUo9+/fr+Tky12IJ0+erKSk0rv0JKeuXbsqLCzMZtiaNWvUtWtXSZKnp6c6depkUyYrK0thYWHWMgAAAAAAAACch10PyWnfvr2GDBmiW265RYZh6O2331alSpXyLDthwgS7Z56UlKTDhw9bP0dGRioiIkLVqlVTvXr1NH78eJ08eVKfffaZJOnJJ5/U+++/r+eff16PPvqo1q5dq6+//lo//vijtY4xY8Zo8ODB6ty5s2644QbNmjVLycnJGjJkiN1xAQAAAAAAACWFh+TYsitBuWDBAk2cOFE//PCDLBaLfv75Z1WokHtSi8XiUIJy27ZtuuOOO6yfx4wZI0kaPHiwFixYoOjoaEVFRVnHBwcH68cff9Szzz6rd999V3Xq1NEnn3yi0NBQa5l+/frpzJkzmjBhgmJiYtS+fXutXLky14NzAAAAAAAAAJjPrgRls2bNtHjxYkmSm5ubwsLCVLNmzSLP/Pbbb5dRQMp4wYIFeU6zc+fOAusdOXKkRo4cWdTwAAAAAAAAAJQwuxKUOWVlFd+j3wEAAAAAAACUbw4nKCXpyJEjmjVrlvbv3y9JatmypUaNGqVGjRoVa3AAAAAAAAAAyja7nuKd06pVq9SyZUtt2bJFbdu2Vdu2bbV582a1atVKa9asKYkYAQAAAAAAgDKDZ+TYcrgH5Ysvvqhnn31Wb731Vq7hL7zwgu68885iCw4AAAAAAABA2eZwD8r9+/dr6NChuYY/+uij2rdvX7EEBQAAAAAAAKB8cDhBWaNGDUVEROQaHhERUSxP9gYAAAAAAABQfjh8ifewYcP0+OOP6+jRo7rpppskSRs3btS0adM0ZsyYYg8QZZOj91ow8pjA1e7XkFcbXHk+AMxXHnd3jnGuj1XofK5eJ+xnAFAUznMQdZ5IXIfBUjONwwnKV199VZUrV9Y777yj8ePHS5Jq1aqlSZMm6Zlnnin2AFE6LBazIygaM+O35PO+4GmKEHCOSV19vQG4gv25/GLV28+SY0cp0ncpAJdW2HdmeTo6cP7gupxx1dn8tnXGAIvAGdtj8B9BGw4nKC0Wi5599lk9++yzSkxMlCRVrly52AND6XL1/cLM+I183hc8TRECzjGpq683AFewP5dfrHr75TyRp4cDUH4V9p1Zno4OnD+4LmdcdTa/bZ0xwCIoa+0pixxOUOZEYhLXytF/XuT13w4n/AdIgUrrPzbO+J8hACWjPO7uHONcH6vQ+Vy9TtjPAKAonOcg6jyRuA6u0DCPww/JAQAAAAAAAIDiQoISAAAAAAAAgGlIUAIAAAAAAAAwjUMJyvT0dHXv3l1//fVXScUDAAAAAAAAoBxxKEHp4eGhXbt2lVQsAAAAAAAAAMoZhy/x/ve//6158+aVRCwAAAAAAAAAypkKjk6QkZGh+fPn65dfflGnTp1UsWJFm/EzZswotuAAAAAAAAAAlG0OJyj37Nmjjh07SpIOHTpkM85isRRPVAAAAAAAAEAZZRhmR+BcHE5Q/vrrryURBwAAAAAAAIByyOF7UGY7fPiwVq1apYsXL0qSDFK/AAAAAAAAABzkcILy3Llz6t69u5o2baq77rpL0dHRkqShQ4dq7NixxR4gyiZH09l55b9dLSVeWjl8/lcAlB/lcXfnGOf6WIXO5+p1wn4GAEXhPAdR54nEdRgsNdM4nKB89tln5eHhoaioKPn6+lqH9+vXTytXrizW4FB6XP32oWbGb8nnfcHTFCHgHJO6+noDcAX7c/nFqrdfzvudF+m7FIBLK+w7szwdHTh/cF3OuOpsfts6Y4BF4IztccaYzOTwPShXr16tVatWqU6dOjbDmzRpor///rvYAgMAAAAAAADKIq5YsOVwD8rk5GSbnpPZzp8/Ly8vr2IJCqXP1XcMM+M38nlf8DRFCDjHpK6+3gBcwf5cfrHq7ZfznudcggWUX4V9Z5anowPnD67LGVedzW9bZwywCMpae8oihxOU3bp102effWb9bLFYlJWVpenTp+uOO+64piBmz56tBg0ayNvbW126dNGWLVvyLXv77bfLYrHkevXu3dta5pFHHsk1vmfPntcUG0qGoz2Z8+r67Gq9oUur+zbdxIHyozzu7hzjXB+r0PlcvU7YzwCgKJznIOo8kbgObiFjHocv8Z4+fbq6d++ubdu2KS0tTc8//7z27t2r8+fPa+PGjQ4H8NVXX2nMmDGaO3euunTpolmzZik0NFQHDx5UzZo1c5VfunSp0tLSrJ/PnTundu3a6YEHHrAp17NnT3366afWz/TuBAAAAAAAAJyPwz0oW7durUOHDumWW25Rnz59lJycrPvuu087d+5Uo0aNHA5gxowZGjZsmIYMGaKWLVtq7ty58vX11fz58/MsX61aNQUGBlpfa9aska+vb64EpZeXl025qlWrOhwbAAAAAAAAgJLlcA9KSfL399fLL79c5JmnpaVp+/btGj9+vHWYm5ubQkJCFB4eblcd8+bNU//+/VWxYkWb4evWrVPNmjVVtWpV/eMf/9Drr7+u6667Ls86UlNTlZqaav2ckJBwDa0BAAAAAAAACsf9tG1dU4LywoULmjdvnvbv3y9JatmypYYMGaJq1ao5VM/Zs2eVmZmpgIAAm+EBAQE6cOBAodNv2bJFe/bs0bx582yG9+zZU/fdd5+Cg4N15MgRvfTSS+rVq5fCw8Pl7u6eq56pU6dq8uTJDsUOAAAAAAAAoOgcvsR7w4YNatCggd577z1duHBBFy5c0Hvvvafg4GBt2LChJGLM17x589SmTRvdcMMNNsP79++ve+65R23atFHfvn31ww8/aOvWrVq3bl2e9YwfP17x8fHW1/Hjx0shegAAAAAAAAAO96AcMWKE+vXrpzlz5lh7I2ZmZuqpp57SiBEjtHv3brvrql69utzd3RUbG2szPDY2VoGBgQVOm5ycrMWLF2vKlCmFzqdhw4aqXr26Dh8+rO7du+ca7+XlxUN0AAAAAAAAABM43IPy8OHDGjt2rM2l0u7u7hozZowOHz7sUF2enp7q1KmTwsLCrMOysrIUFhamrl27FjjtkiVLlJqaqn//+9+FzufEiRM6d+6cgoKCHIoPAAAAAAAAQMlyOEHZsWNH670nc9q/f7/atWvncABjxozRxx9/rIULF2r//v0aPny4kpOTNWTIEEnSoEGDbB6ik23evHnq27dvrgffJCUlady4cfrjjz907NgxhYWFqU+fPmrcuLFCQ0Mdjg8AAAAAAAAoTgbPyLFh1yXeu3btsr5/5plnNGrUKB0+fFg33nijJOmPP/7Q7Nmz9dZbbzkcQL9+/XTmzBlNmDBBMTExat++vVauXGl9cE5UVJTc3GzzqAcPHtTvv/+u1atX56rP3d1du3bt0sKFCxUXF6datWqpR48eeu2117iMGwAAAAAAAHAydiUo27dvL4vFIiNHevf555/PVe6hhx5Sv379HA5i5MiRGjlyZJ7j8nqwTbNmzWxiycnHx0erVq1yOAaULkf/UZDX6na1fzaU1n9H+C8MUH6Ux92dY5zrYxU6n6vXCfsZABSF8xxEnScS12Gw1ExjV4IyMjKypOOAySwWsyMoGjPjt+TzvuBpihBwjkldfb0BuIL9ufxi1dvPkmNHKdJ3KQCXVth3Znk6OnD+4LqccdXZ/LZ1xgCLoKy1pyyyK0FZv379ko4DAAAAAAAAQDlkV4LyaqdOndLvv/+u06dPKysry2bcM888UyyBAQAAAAAAAGURF5PbcjhBuWDBAj3xxBPy9PTUddddZ3upjcVCghIAAAAAAACA3RxOUL766quaMGGCxo8fn+vp2nBdrn4zdDPjN/J5X/A0RQg4x6Suvt4AXMH+XH6x6u2X8yGJ3MQeKL8K+84sT0cHzh9clzOuOpvfts4YYBGUtfaURQ5nGFNSUtS/f3+SkygSR+9Pm9cNbbnHbd64+S9QfpTH3Z1jnOtjFTqfq9cJ+xkAFIXzHESdJxLXwUP4zONwlnHo0KFasmRJScQCAAAAAAAAoJxx+BLvqVOn6p///KdWrlypNm3ayMPDw2b8jBkzii04AAAAAAAAoKwxuO7cxjUlKFetWqVmzZpJUq6H5AAAAAAAAACAvRxOUL7zzjuaP3++HnnkkRIIBwAAAAAAAEB54vA9KL28vHTzzTeXRCwAAAAAAAAAyhmHE5SjRo3S//3f/5VELAAAAAAAAADKGYcv8d6yZYvWrl2rH374Qa1atcr1kJylS5cWW3AAAAAAAABAWcMjcmw5nKCsUqWK7rvvvpKIBeWIoztiXg+3crWdubTi5UFgQPlRHnd3jnGuj1XofK5eJ+xnAFAUznMQdZ5IXIfBUjONwwnKTz/9tCTigMlc/QHsZsZvyed9wdMUIeAck7r6egNwBftz+cWqt58lx45SpO9SAC6tsO/M8nR04PzBdTnjqrP5beuMARaBM7bHCUMylcP3oAQAAAAAAACA4uJwD8rg4GCb/15f7ejRo0UKCAAAAAAAAED54XCCcvTo0Taf09PTtXPnTq1cuVLjxo0rrrgAAAAAAACAMom7XdpyOEE5atSoPIfPnj1b27ZtK3JAAAAAAAAAAMqPYrsHZa9evfTtt98WV3UoZa7+tEYz4zfyeV/wNEUIOMekrr7eAFzB/lx+sertZ+TYUXjKJlB+FfadWZ6ODpw/uC5nXHU2v22dMcAiKGvtKYuKLUH5zTffqFq1asVVHco4R59W5YxP3HJWLCug/CiPuzvHONfHKnQ+V68T9jMAKArnOYg6TySuw8JSM43Dl3h36NDB5iE5hmEoJiZGZ86c0QcffFCswQEAAAAAAAAo2xxOUPbt29fms5ubm2rUqKHbb79dzZs3L664AAAAAAAAgLKJy85tOJygnDhxYknEAQAAAAAAAKAcKrZ7UBbF7Nmz1aBBA3l7e6tLly7asmVLvmUXLFggi8Vi8/L29rYpYxiGJkyYoKCgIPn4+CgkJER//fVXSTcDAAAAAAAAgIPsTlC6ubnJ3d29wFeFCg53yNRXX32lMWPGaOLEidqxY4fatWun0NBQnT59Ot9p/Pz8FB0dbX39/fffNuOnT5+u9957T3PnztXmzZtVsWJFhYaG6tKlSw7HBwAAAAAAAKDk2J1R/O677/IdFx4ervfee09ZWVkOBzBjxgwNGzZMQ4YMkSTNnTtXP/74o+bPn68XX3wxz2ksFosCAwPzHGcYhmbNmqVXXnlFffr0kSR99tlnCggI0LJly9S/f3+HYwQAAAAAAABQMuxOUGYn+3I6ePCgXnzxRa1YsUIDBw7UlClTHJp5Wlqatm/frvHjx1uHubm5KSQkROHh4flOl5SUpPr16ysrK0sdO3bUm2++qVatWkmSIiMjFRMTo5CQEGt5f39/denSReHh4XkmKFNTU5Wammr9nJCQ4FA74DhH7wVrcPNYu7GsgPKjPO7uHONcH6vQ+Vy9TtjPAKAonOcg6jyRuA6jFJca68fWNd2D8tSpUxo2bJjatGmjjIwMRUREaOHChapfv75D9Zw9e1aZmZkKCAiwGR4QEKCYmJg8p2nWrJnmz5+v77//Xv/973+VlZWlm266SSdOnJAk63SO1Dl16lT5+/tbX3Xr1nWoHWWBxWJ2BEVjZvyWfN4XPE0RAs4xqauvNwBXsD+XX6x6+1ly7ChF+i4F4NIK+84sT0cHzh9clzOuOpvfts4YYBGUtfaURQ4lKOPj4/XCCy+ocePG2rt3r8LCwrRixQq1bt26pOLLpWvXrho0aJDat2+v2267TUuXLlWNGjX04YcfXnOd48ePV3x8vPV1/PjxYowYAAAAAAAAQH7svsR7+vTpmjZtmgIDA7Vo0aI8L/l2VPXq1eXu7q7Y2Fib4bGxsfneY/JqHh4e6tChgw4fPixJ1uliY2MVFBRkU2f79u3zrMPLy0teXl7X0AIAAAAAAAAARWF3gvLFF1+Uj4+PGjdurIULF2rhwoV5llu6dKndM/f09FSnTp0UFhamvn37SpKysrIUFhamkSNH2lVHZmamdu/erbvuukuSFBwcrMDAQIWFhVkTkgkJCdq8ebOGDx9ud2wAAAAAAAAASp7dCcpBgwbZ3PenuIwZM0aDBw9W586ddcMNN2jWrFlKTk62PtV70KBBql27tqZOnSpJmjJlim688UY1btxYcXFx+s9//qO///5bjz32mKTL9yYaPXq0Xn/9dTVp0kTBwcF69dVXVatWLWsSFAAAAAAAADCLwVPpbNidoFywYEGJBNCvXz+dOXNGEyZMUExMjNq3b6+VK1daH3ITFRUlN7crt8q8cOGChg0bppiYGFWtWlWdOnXSpk2b1LJlS2uZ559/XsnJyXr88ccVFxenW265RStXrpS3t3eJtAEAAAAAAADAtbE7QVmSRo4cme8l3evWrbP5PHPmTM2cObPA+iwWi6ZMmaIpU6YUV4hlnqsn7s2M38jnfcHTFCHgHJO6+noDcAX7c/nFqrdfzp4GRfouBeDSCvvOLE9HB84fXJczrjqb37bOGGARlLX2lEUOPcUbAAAAAAAAAIoTCUqYwtG7mZbA7U/LLJYVUH6Ux92dY5zrYxU6n6vXCfsZABSF8xxEnScS12FhqZmGBCUAAAAAAABQirjq3BYJSgAAAAAAAACmIUEJAAAAAAAAwDQkKAEAAAAAAACYhgQlTOHovRaMPCbIa5gzM0opYFdbLgCuXXnc3TnGuT5WofO5ep2wnwFAUVw5iJp9POVw7jiDpWYaEpSQ5PpPazQzfks+7wuepggB55jU1dcbgCvYn8svVr39LDl2FJ6yCZRfhX1nlqejA+cPrssZV50zxlRc2FecHwlKAAAAAAAAAKYhQQkAAAAAAADANCQoAQAAAAAAAJiGBCUAAAAAAAAA05CgBAAAAAAAAEqR2U95dzYkKAEAAAAAAACYhgQlAAAAAAAAANOQoIQk1+9abGb8Rj7vC56mCAHnmNTV1xuAK9ifyy9Wvf2MHDtKkb5LAbi0wr4zy9PRgfMH1+WMq84ZYyou7CvOjwQlAAAAAAAAANOQoIQpLI6Wd3SCcoxlBZQf5XF35xjn+liFzufqdcJ+BgBF4TwHUeeJxHVYSnGpcTWILRKUAAAAAAAAAExDghIFKqn7NNjct9GOmeRVJL//NjjTvSWu5f6URZ5nMc/IiRZnCXG9FrpexK7INZaya0RZvJzpGI9rY/YqdPZtyIz4rp6luff2dvIVVMax9J2LMxyv7L7HvhPE6jyMPN7ZOaWdE9jzG/pa5l/WXEv7C/seKqzO/FZNeV8X9iBBCVOUxy+w8thmAAAAAACAwpCghKT87zVUUvcgKu56c9ZX2vdNsuTzPte4nDEW5b4WpdzWsn/fEtdroetF7IpKfylzz7fyi1VvP0uOHeVav0udfV9z9vhKWmne+wu5ucrSL2w/cZV2FMae40FJHzPsrb68H7uuRV6LzN7laCmhBV7WVmN+v8eLq848x+eXW8ljGJ2YbJGgBAAAAAAAAGAaEpQAAAAAAAAATOMUCcrZs2erQYMG8vb2VpcuXbRly5Z8y3788cfq1q2bqlatqqpVqyokJCRX+UceeUQWi8Xm1bNnz5JuBgAAAAAAAAAHmZ6g/OqrrzRmzBhNnDhRO3bsULt27RQaGqrTp0/nWX7dunUaMGCAfv31V4WHh6tu3brq0aOHTp48aVOuZ8+eio6Otr4WLVpUGs0BAAAAAAAA4ADTE5QzZszQsGHDNGTIELVs2VJz586Vr6+v5s+fn2f5L774Qk899ZTat2+v5s2b65NPPlFWVpbCwsJsynl5eSkwMND6qlq1amk0BwAAAAAAACgQD8mxZWqCMi0tTdu3b1dISIh1mJubm0JCQhQeHm5XHSkpKUpPT1e1atVshq9bt041a9ZUs2bNNHz4cJ07dy7fOlJTU5WQkGDzAgAAAAAAAFDyTE1Qnj17VpmZmQoICLAZHhAQoJiYGLvqeOGFF1SrVi2bJGfPnj312WefKSwsTNOmTdP69evVq1cvZWZm5lnH1KlT5e/vb33VrVv32hsFAAAAAAAAwG4VzA6gKN566y0tXrxY69atk7e3t3V4//79re/btGmjtm3bqlGjRlq3bp26d++eq57x48drzJgx1s8JCQkkKQEAAAAAAIBSYGoPyurVq8vd3V2xsbE2w2NjYxUYGFjgtG+//bbeeustrV69Wm3bti2wbMOGDVW9enUdPnw4z/FeXl7y8/OzeZU3rn7vAzPjN/J5X/A0RQg4x6Suvt4AXMH+XH6x6u1n5NhRivRdCsClFfadWZ6ODpw/uC5nXHU2v22dMcAiKGvtKYtMTVB6enqqU6dONg+4yX7gTdeuXfOdbvr06Xrttde0cuVKde7cudD5nDhxQufOnVNQUFCxxA0AAAAAAACgeJj+FO8xY8bo448/1sKFC7V//34NHz5cycnJGjJkiCRp0KBBGj9+vLX8tGnT9Oqrr2r+/Plq0KCBYmJiFBMTo6SkJElSUlKSxo0bpz/++EPHjh1TWFiY+vTpo8aNGys0NNSUNiI3i6PlHZ2gHGNZAeVHedzdOca5Plah87l6nbCfAUBROM9B1HkicR0WlpppTL8HZb9+/XTmzBlNmDBBMTExat++vVauXGl9cE5UVJTc3K7kUefMmaO0tDTdf//9NvVMnDhRkyZNkru7u3bt2qWFCxcqLi5OtWrVUo8ePfTaa6/Jy8urVNtWFpRUN+irL4su7BCQVxz5xeZMXbfN6CJf3PNxosVZQlyvha4XsSvKcRmpYcjipL/Wy+O24EzHeFwbs1ehs29DZsR39SzNvXWOk6+gMo6l71yc4Xhl9y2snCBW52HYvnXgNNLe5WjYWbC8r5ZraX9h30OF1ZlvnuIaYilvTE9QStLIkSM1cuTIPMetW7fO5vOxY8cKrMvHx0erVq0qpshQUsrjF1g5bDIAAAAAAEChTL/EG84hv85BJdVpqLjrzVlfaXd0Kmh2lnzfFyHIUm6rc/YbK06u10LXi9gVlf5SdtJOmigFrHr75ezNfK3fpc6+rzl7fCWNS+vM5SpLv7D9xFXaURh7jgclfcywt/ryfuy6FnktMnuXY0ld3VPWVqPNb/Bialxh1eSbWyme2ZdpJCgBAAAAAAAAmIYEJQAAAAAAAADTkKAEAAAAAAAAYBoSlAAAAAAAAABMQ4ISAAAAAAAAgGlIUAIAAAAAAAClyDAMs0NwKiQoAQAAAAAAAJiGBCUAAAAAAAAA05CgBAAAAAAAAGAaEpQAAAAAAAAATEOCEpIkV783q5nxGzbv7QvE3nKFzdDV1xuAK9ifyy9Wvf1y3ky+SN+lAFxaYd+Z5enowPmD63LGVXctv21dhTPuK04YkqlIUKJAJbUTG8WQZMtvMmc68Bj5vHclrhq3/Vyvha4XsSsy8njn3HgKIGAfZ99VnD2+klbWfhC7Gpa+c3GG44G9IThDrM7I0cVi73LkvM8+JbGUCqszv1XDGiscCUqgtHBEAgAAAAAAyIUEJSRJFotjw0tqfsVRX0nFnO+8r6Ggxf6pCq6nFNpayovTBK7XQteL2BWV/lIu7WMXnAer3n6WHDvKtX6XOvu+5uzxlbQinSOhyFxl6Re2n7hKOwpjz/GgpI8Z9lZf3o9d1yKvRWbvcrSU0AIva6sxZ3uKa5EVVk2+uZXimX2ZRoISAAAAAAAAgGlIUAIAAAAAAACliFuJ2iJBCQAAAAAAAMA0JCgBAAAAAAAAmIYEJQAAAAAAAADTkKAEAAAAAAAAYBoSlAAAAAAAAEApMsRTcnIiQQkAAAAAAADANCQoAQAAAAAAAJjGKRKUs2fPVoMGDeTt7a0uXbpoy5YtBZZfsmSJmjdvLm9vb7Vp00Y//fSTzXjDMDRhwgQFBQXJx8dHISEh+uuvv0qyCQAAAAAAAACugekJyq+++kpjxozRxIkTtWPHDrVr106hoaE6ffp0nuU3bdqkAQMGaOjQodq5c6f69u2rvn37as+ePdYy06dP13vvvae5c+dq8+bNqlixokJDQ3Xp0qXSahYAAAAAAAAAO1QwO4AZM2Zo2LBhGjJkiCRp7ty5+vHHHzV//ny9+OKLucq/++676tmzp8aNGydJeu2117RmzRq9//77mjt3rgzD0KxZs/TKK6+oT58+kqTPPvtMAQEBWrZsmfr37196jXNSEcfjFBN/0WbYzqi4PMtuOpaggErFn9jdE51sfb/+SJzcLJYCy0ecSlKQn6fNsNSMLOv7TccSVKOihyRpf2yKdfi6w3F2xWNvubzEXcywvv/9aLx8PNytnw+euRLL9uOJ1vebjsWrZiXb9thr16kryy7iZLJq+cXZjDdUtPZcLeJUks3n4qz7Wl1rDHlNd/jsxQLHO6M9MSkuE6urOnLOdrso7Bh1LaIu2B5b913Dev0rx/b7az5xlrVt5cBp+5eTq+zf209cOc46c5zFJeJkkq7z9bimaXfl+E6KSUy7puW148SV72NnXN4RJ5MUWPnazhGu1a5TSTbLYk/MlXONvJZRSS63uEtXzquccf2UdVuPJyoxNdPsMGykpqcqJilLp9IS5eWRJkn6MyrHcfNAXK5p4i9m5jnc1ew5kWNfzKc9WyITlZyalee4a5WSdmUb2Hg4Xv4+hacN9p3M8RvM5GV/9fwzszJ0Me2SlCz5eGXK3b1k0yDnUtKt7387Gi9Pt6zL8z8r+XhcWbbb/06Sj6e7Ncb0zAztOWnfd9SOE4mq7OWe7/hsu04lF3oszbm8ziVdiT387yT5+dh/PMhrX01NT1VMTJZOJV0ZVmAs/4s1MzPDZpm5u13bOjudmG5t3+4c+5N1fnlsqxFRBe93+6ML3tb3nEzRhoPxuba5vy+k5iobm5CqlXuiVaOylzrVr1Z4g8o4i2EYpj02KC0tTb6+vvrmm2/Ut29f6/DBgwcrLi5O33//fa5p6tWrpzFjxmj06NHWYRMnTtSyZcv0559/6ujRo2rUqJF27typ9u3bW8vcdtttat++vd59991cdaampio19crGkpCQoLp16yo+Pl5+fn7F0lZn8syinVr+5ymzwwAAAAAAACjX7mhWQ58OucHsMEpEQkKC/P397cqvmdqD8uzZs8rMzFRAQIDN8ICAAB04cCDPaWJiYvIsHxMTYx2fPSy/MlebOnWqJk+efE1tcEXB1Suqc/2qNsPSswz9eTwuV9m2QRWLdd67/tdzsm1QRZv3hZVvHVhRbnl0YMqrjksZWTp05mKhdUfFpSruYoaq+VZQHX8vxxpiRxx5jbOnzYXJNAztjbn8X5ucyyXy/CUlpmaqZiWPYu95kR23h5tFLQJ8i7Vue52IT9X5lAxV8amgelXsX1/RCWk6k5yuyl7uCq7mnWt8wqVMHbtwSRZJbYp5ey9u2euhRYCvPPLaIVCsimN/tXcektS8po883R2/80pecRa23bui7HY2qe4jHw/7llP8pQz9fSFVbpbLx0tnZUjaXQrbm9my12GboIpy9AiWPW2rAF/9dfai0jIN1fH3UjVfx09lnXV5F3bOU5LzbBXgK/ccM83IMrTvf1ekZC+jmMQ0nU4q+ePK2eR0nUpIk3cFNzWt4VNi84Gt0vjOu1aZRpYupV+Ut5eP3N0uH/+zDGnPyf/FXOdKzH/FXtTF9CzVquKp6pWurae2M8nIMrTv1P/2xTq262bXidztL06O1p+WaehAdN6xloaY+DSdTkxXZW93BVe3PUYZMpSZmSllSu5u7rKUwJUxV8u5TxmGocysTKnC5fnvPnF5ObWpc+X70JChLCNLRlYF7YtOsk6bX72FfZdaj++BvnLPo71RcZcUdzFTVXzdVe+qY3r2um8VcGWfs0de+2pmVpYuXboob4/cdWXH2KyGjw5e9fv96mVmcfDM4UBMitIyDNWu6qnr/nelZWaWob2nrvR+9HS3qHlQ7t+2+R1fsl1Kz9Kh2Iu5xmcvtxZBvqrgrlzbXNzFDEXFpcrdIlXyrqD4ixlqXLOSqvh4qElAZYfaV1aZfom3Mxg/frzGjBlj/Zzdg7KsevbOpnr2zqb5jk9PT1dkZKS8vLzk4eH6X+wAAAAAXFNKaoqOnDuiRvXrydfbnH+Uw7WlZ6Yr6WKSFCdV8q1U6r9x09P/N/8qUiXvSvJwzz3/9Mx0pWakqk6lOjoRdaLEf4tf2a8a5dqvUi6l6MjRI2pUw7F9Lq999VrrsmeZObP8trn09HSlpqYqODiYXEseTH1ITvXq1eXu7q7Y2Fib4bGxsQoMDMxzmsDAwALLZ/91pE4vLy/5+fnZvAAAAAAAAACUPFMTlJ6enurUqZPCwsKsw7KyshQWFqauXbvmOU3Xrl1tykvSmjVrrOWDg4MVGBhoUyYhIUGbN2/Ot04AAAAAAAAA5jD9Eu8xY8Zo8ODB6ty5s2644QbNmjVLycnJ1qd6Dxo0SLVr19bUqVMlSaNGjdJtt92md955R71799bixYu1bds2ffTRR5Iki8Wi0aNH6/XXX1eTJk0UHBysV199VbVq1bJ5EA8AAAAAAAAA85meoOzXr5/OnDmjCRMmKCYmRu3bt9fKlSutD7mJioqSW46bqd5000368ssv9corr+ill15SkyZNtGzZMrVu3dpa5vnnn1dycrIef/xxxcXF6ZZbbtHKlSvl7V02HhQAAAAAAAAAlBWmJyglaeTIkRo5cmSe49atW5dr2AMPPKAHHngg3/osFoumTJmiKVOmFFeIAAAAAAAAAEqAqfegBAAAAAAAAFC+kaAEAAAAAAAAYBoSlAAAAAAAAABMQ4ISAAAAAAAAgGlIUAIAAAAAAAAwDQlKAAAAAAAAAKapYHYAzsgwDElSQkKCyZGYIz09XUlJSUpJSVGFCmwiAAAAAMxxKf2SkpOSFZ8Qr0sXL5kdDlxQRlaGUtNSpSQpPTW91H/jZmRkKDUjVXKX0i+lq4Jb7vlnZGUoy8hSQlZCqfwWL2i/upR2ScnJyYr3jNelFPv3ubzqvNa67Flmziy/bS4jI0NZWVlKSEiQh4eHyVGWjuy8WnaerSCutZZLSWJioiSpbt26JkcCAAAAAAAAuK7ExET5+/sXWMZi2JPGLGeysrJ06tQpVa5cWRaLxexwik1CQoLq1q2r48ePy8/Pz+xwgFLBdo/yhm0e5RHbPcobtnmUR2z3KG/KwjZvGIYSExNVq1YtubkVfJdJelDmwc3NTXXq1DE7jBLj5+fnshs3cK3Y7lHesM2jPGK7R3nDNo/yiO0e5Y2rb/OF9ZzMxkNyAAAAAAAAAJiGBCUAAAAAAAAA05CgLEe8vLw0ceJEeXl5mR0KUGrY7lHesM2jPGK7R3nDNo/yiO0e5U152+Z5SA4AAAAAAAAA09CDEgAAAAAAAIBpSFACAAAAAAAAMA0JSgAAAAAAAACmIUEJAAAAAAAAwDQkKMuR2bNnq0GDBvL29laXLl20ZcsWs0MCCjVp0iRZLBabV/Pmza3jL126pBEjRui6665TpUqV9K9//UuxsbE2dURFRal3797y9fVVzZo1NW7cOGVkZNiUWbdunTp27CgvLy81btxYCxYsKI3mAZKkDRs26O6771atWrVksVi0bNkym/GGYWjChAkKCgqSj4+PQkJC9Ndff9mUOX/+vAYOHCg/Pz9VqVJFQ4cOVVJSkk2ZXbt2qVu3bvL29lbdunU1ffr0XLEsWbJEzZs3l7e3t9q0aaOffvqp2NsLFLbNP/LII7mO/T179rQpwzYPVzJ16lRdf/31qly5smrWrKm+ffvq4MGDNmVK85yG3wUoDfZs97fffnuu4/2TTz5pU4btHq5izpw5atu2rfz8/OTn56euXbvq559/to7nOF8IA+XC4sWLDU9PT2P+/PnG3r17jWHDhhlVqlQxYmNjzQ4NKNDEiRONVq1aGdHR0dbXmTNnrOOffPJJo27dukZYWJixbds248YbbzRuuukm6/iMjAyjdevWRkhIiLFz507jp59+MqpXr26MHz/eWubo0aOGr6+vMWbMGGPfvn3G//3f/xnu7u7GypUrS7WtKL9++ukn4+WXXzaWLl1qSDK+++47m/FvvfWW4e/vbyxbtsz4888/jXvuuccIDg42Ll68aC3Ts2dPo127dsYff/xh/Pbbb0bjxo2NAQMGWMfHx8cbAQEBxsCBA409e/YYixYtMnx8fIwPP/zQWmbjxo2Gu7u7MX36dGPfvn3GK6+8Ynh4eBi7d+8u8WWA8qWwbX7w4MFGz549bY7958+ftynDNg9XEhoaanz66afGnj17jIiICOOuu+4y6tWrZyQlJVnLlNY5Db8LUFrs2e5vu+02Y9iwYTbH+/j4eOt4tnu4kuXLlxs//vijcejQIePgwYPGSy+9ZHh4eBh79uwxDIPjfGFIUJYTN9xwgzFixAjr58zMTKNWrVrG1KlTTYwKKNzEiRONdu3a5TkuLi7O8PDwMJYsWWIdtn//fkOSER4ebhjG5R/Bbm5uRkxMjLXMnDlzDD8/PyM1NdUwDMN4/vnnjVatWtnU3a9fPyM0NLSYWwMU7upkTVZWlhEYGGj85z//sQ6Li4szvLy8jEWLFhmGYRj79u0zJBlbt261lvn5558Ni8VinDx50jAMw/jggw+MqlWrWrd7wzCMF154wWjWrJn184MPPmj07t3bJp4uXboYTzzxRLG2EcgpvwRlnz598p2GbR6u7vTp04YkY/369YZhlO45Db8LYJart3vDuJygHDVqVL7TsN3D1VWtWtX45JNPOM7bgUu8y4G0tDRt375dISEh1mFubm4KCQlReHi4iZEB9vnrr79Uq1YtNWzYUAMHDlRUVJQkafv27UpPT7fZtps3b6569epZt+3w8HC1adNGAQEB1jKhoaFKSEjQ3r17rWVy1pFdhv0DziAyMlIxMTE226i/v7+6dOlis51XqVJFnTt3tpYJCQmRm5ubNm/ebC1z6623ytPT01omNDRUBw8e1IULF6xl2BfgLNatW6eaNWuqWbNmGj58uM6dO2cdxzYPVxcfHy9JqlatmqTSO6fhdwHMdPV2n+2LL75Q9erV1bp1a40fP14pKSnWcWz3cFWZmZlavHixkpOT1bVrV47zdqhgdgAoeWfPnlVmZqbNRi5JAQEBOnDggElRAfbp0qWLFixYoGbNmik6OlqTJ09Wt27dtGfPHsXExMjT01NVqlSxmSYgIEAxMTGSpJiYmDy3/exxBZVJSEjQxYsX5ePjU0KtAwqXvZ3mtY3m3IZr1qxpM75ChQqqVq2aTZng4OBcdWSPq1q1ar77QnYdQGnp2bOn7rvvPgUHB+vIkSN66aWX1KtXL4WHh8vd3Z1tHi4tKytLo0eP1s0336zWrVtLUqmd01y4cIHfBTBFXtu9JD300EOqX7++atWqpV27dumFF17QwYMHtXTpUkls93A9u3fvVteuXXXp0iVVqlRJ3333nVq2bKmIiAiO84UgQQnAqfXq1cv6vm3bturSpYvq16+vr7/+msQhAJRR/fv3t75v06aN2rZtq0aNGmndunXq3r27iZEBRTdixAjt2bNHv//+u9mhAKUmv+3+8ccft75v06aNgoKC1L17dx05ckSNGjUq7TCBImvWrJkiIiIUHx+vb775RoMHD9b69evNDsslcIl3OVC9enW5u7vnejpUbGysAgMDTYoKuDZVqlRR06ZNdfjwYQUGBiotLU1xcXE2ZXJu24GBgXlu+9njCirj5+dHEhSmy95OCzqGBwYG6vTp0zbjMzIydP78+WLZF/iugNkaNmyo6tWr6/Dhw5LY5uG6Ro4cqR9++EG//vqr6tSpYx1eWuc0/C6AGfLb7vPSpUsXSbI53rPdw5V4enqqcePG6tSpk6ZOnap27drp3Xff5ThvBxKU5YCnp6c6deqksLAw67CsrCyFhYWpa9euJkYGOC4pKUlHjhxRUFCQOnXqJA8PD5tt++DBg4qKirJu2127dtXu3bttfsiuWbNGfn5+atmypbVMzjqyy7B/wBkEBwcrMDDQZhtNSEjQ5s2bbbbzuLg4bd++3Vpm7dq1ysrKsp7od+3aVRs2bFB6erq1zJo1a9SsWTNVrVrVWoZ9Ac7oxIkTOnfunIKCgiSxzcP1GIahkSNH6rvvvtPatWtz3X6gtM5p+F2A0lTYdp+XiIgISbI53rPdw5VlZWUpNTWV47w9zH5KD0rH4sWLDS8vL2PBggXGvn37jMcff9yoUqWKzdOhAGc0duxYY926dUZkZKSxceNGIyQkxKhevbpx+vRpwzAM48knnzTq1atnrF271ti2bZvRtWtXo2vXrtbpMzIyjNatWxs9evQwIiIijJUrVxo1atQwxo8fby1z9OhRw9fX1xg3bpyxf/9+Y/bs2Ya7u7uxcuXKUm8vyqfExERj586dxs6dOw1JxowZM4ydO3caf//9t2EYhvHWW28ZVapUMb7//ntj165dRp8+fYzg4GDj4sWL1jp69uxpdOjQwdi8ebPx+++/G02aNDEGDBhgHR8XF2cEBAQYDz/8sLFnzx5j8eLFhq+vr/Hhhx9ay2zcuNGoUKGC8fbbbxv79+83Jk6caHh4eBi7d+8uvYWBcqGgbT4xMdF47rnnjPDwcCMyMtL45ZdfjI4dOxpNmjQxLl26ZK2DbR6uZPjw4Ya/v7+xbt06Izo62vpKSUmxlimtcxp+F6C0FLbdHz582JgyZYqxbds2IzIy0vj++++Nhg0bGrfeequ1DrZ7uJIXX3zRWL9+vREZGWns2rXLePHFFw2LxWKsXr3aMAyO84UhQVmO/N///Z9Rr149w9PT07jhhhuMP/74w+yQgEL169fPCAoKMjw9PY3atWsb/fr1Mw4fPmwdf/HiReOpp54yqlatavj6+hr33nuvER0dbVPHsWPHjF69ehk+Pj5G9erVjbFjxxrp6ek2ZX799Vejffv2hqenp9GwYUPj008/LY3mAYZhXN7+JOV6DR482DAMw8jKyjJeffVVIyAgwPDy8jK6d+9uHDx40KaOc+fOGQMGDDAqVapk+Pn5GUOGDDESExNtyvz555/GLbfcYnh5eRm1a9c23nrrrVyxfP3110bTpk0NT09Po1WrVsaPP/5YYu1G+VXQNp+SkmL06NHDqFGjhuHh4WHUr1/fGDZsWK6TarZ5uJK8tndJNucbpXlOw+8ClIbCtvuoqCjj1ltvNapVq2Z4eXkZjRs3NsaNG2fEx8fb1MN2D1fx6KOPGvXr1zc8PT2NGjVqGN27d7cmJw2D43xhLIZhGKXXXxMAAAAAAAAAruAelAAAAAAAAABMQ4ISAAAAAAAAgGlIUAIAAAAAAAAwDQlKAAAAAAAAAKYhQQkAAAAAAADANCQoAQAAAAAAAJiGBCUAAAAAAAAA05CgBAAAAAAAAGAaEpQAAACQJK1bt04Wi0VxcXEFlmvQoIFmzZpVKjEBAACg7CNBCQAA4EIeeeQRWSwWWSwWeXp6qnHjxpoyZYoyMjKKXPdNN92k6Oho+fv7S5IWLFigKlWq5Cq3detWPf7440WeHwAAACBJFcwOAAAAAI7p2bOnPv30U6Wmpuqnn37SiBEj5OHhofHjxxepXk9PTwUGBhZarkaNGkWaDwAAAJATPSgBAABcjJeXlwIDA1W/fn0NHz5cISEhWr58uSTpwoULGjRokKpWrSpfX1/16tVLf/31l3Xav//+W3fffbeqVq2qihUrqlWrVvrpp58k2V7ivW7dOg0ZMkTx8fHWHpuTJk2SlPsS76ioKPXp00eVKlWSn5+fHnzwQcXGxlrHT5o0Se3bt9fnn3+uBg0ayN/fX/3791diYmKB7fz222/VqlUreXl5qUGDBnrnnXdsxjdo0EBvvvmmHn30UVWuXFn16tXTRx99VGCdiYmJGjhwoCpWrKigoCDNnDlTt99+u0aPHm0tk5qaqueee061a9dWxYoV1aVLF61bt846Prtn6apVq9SiRQtVqlRJPXv2VHR0tLVMVlaWpkyZojp16sjLy0vt27fXypUrreOPHTsmi8Wir7/+Wt26dZOPj4+uv/56HTp0SFu3blXnzp1VqVIl9erVS2fOnLFpwyeffKIWLVrI29tbzZs31wcffFBgmwEAAJwdCUoAAAAX5+Pjo7S0NEmXLwHftm2bli9frvDwcBmGobvuukvp6emSpBEjRig1NVUbNmzQ7t27NW3aNFWqVClXnTfddJNmzZolPz8/RUdHKzo6Ws8991yucllZWerTp4/Onz+v9evXa82aNTp69Kj69etnU+7IkSNatmyZfvjhB/3www9av3693nrrrXzbtH37dj344IPq37+/du/erUmTJunVV1/VggULbMq988476ty5s3bu3KmnnnpKw4cP18GDB/Otd8yYMdq4caOWL1+uNWvW6LffftOOHTtsyowcOVLh4eFavHixdu3apQceeEA9e/a0SfSmpKTo7bff1ueff64NGzYoKirKZvm8++67euedd/T2229r165dCg0N1T333GNThyRNnDhRr7zyinbs2KEKFSrooYce0vPPP693331Xv/32mw4fPqwJEyZYy3/xxReaMGGC3njjDe3fv19vvvmmXn31VS1cuDDfNgMAADg9AwAAAC5j8ODBRp8+fQzDMIysrCxjzZo1hpeXl/Hcc88Zhw4dMiQZGzdutJY/e/as4ePjY3z99deGYRhGmzZtjEmTJuVZ96+//mpIMi5cuGAYhmF8+umnhr+/f65y9evXN2bOnGkYhmGsXr3acHd3N6Kioqzj9+7da0gytmzZYhiGYUycONHw9fU1EhISrGXGjRtndOnSJd92PvTQQ8add95pM2zcuHFGy5YtbeL497//bf2clZVl1KxZ05gzZ06edSYkJBgeHh7GkiVLrMPi4uIMX19fY9SoUYZhGMbff/9tuLu7GydPnrSZtnv37sb48eMNw7i8XCQZhw8fto6fPXu2ERAQYP1cq1Yt44033rCp4/rrrzeeeuopwzAMIzIy0pBkfPLJJ9bxixYtMiQZYWFh1mFTp041mjVrZv3cqFEj48svv7Sp97XXXjO6du2aZ5sBAABcAfegBAAAcDE//PCDKlWqpPT0dGVlZemhhx7SpEmTFBYWpgoVKqhLly7Wstddd52aNWum/fv3S5KeeeYZDR8+XKtXr1ZISIj+9a9/qW3bttccy/79+1W3bl3VrVvXOqxly5aqUqWK9u/fr+uvv17S5cuxK1eubC0TFBSk06dPF1hvnz59bIbdfPPNmjVrljIzM+Xu7i5JNrFbLBYFBgbmW+/Ro0eVnp6uG264wTrM399fzZo1s37evXu3MjMz1bRpU5tpU1NTdd1111k/+/r6qlGjRnm2JyEhQadOndLNN9+cK/4///zTZljO+AMCAiRJbdq0sRmWXW9ycrKOHDmioUOHatiwYdYyGRkZ1gcbAQAAuCISlAAAAC7mjjvu0Jw5c+Tp6alatWqpQgX7T+kee+wxhYaG6scff9Tq1as1depUvfPOO3r66adLMGLJw8PD5rPFYlFWVpbT1ZuUlCR3d3dt377dmgTNlvNS+LzmaxiGw/PLWY/FYslzWHZ7kpKSJEkff/yxTRJaUq5YAQAAXAn3oAQAAHAxFStWVOPGjVWvXj2b5GSLFi2UkZGhzZs3W4edO3dOBw8eVMuWLa3D6tatqyeffFJLly7V2LFj9fHHH+c5H09PT2VmZhYYS4sWLXT8+HEdP37cOmzfvn2Ki4uzmaejWrRooY0bN9oM27hxo5o2bXrNybiGDRvKw8NDW7dutQ6Lj4/XoUOHrJ87dOigzMxMnT59Wo0bN7Z52fOEc0ny8/NTrVq18oy/KMskICBAtWrV0tGjR3PFFhwcfM31AgAAmI0elAAAAGVEkyZN1KdPHw0bNkwffvihKleurBdffFG1a9e2Xi49evRo9erVS02bNtWFCxf066+/qkWLFnnW16BBAyUlJSksLEzt2rWTr6+vfH19bcqEhISoTZs2GjhwoGbNmqWMjAw99dRTuu2229S5c+drbsvYsWN1/fXX67XXXlO/fv0UHh6u999/v0hPrK5cubIGDx6scePGqVq1aqpZs6YmTpwoNzc3a+/Fpk2bauDAgRo0aJDe+f/27tiVFjaOA/jXcrNJMSkDoVOOcEodiuUMyhlsNikGpc5wTlZyRuEvUMeisDHIYjJSjPwNBhkMBnm3u9zeul31nt7r85mfnuf3rN9+v+fZ38/ExESen59zfX2dsbGxLCws/NZZm5ub2d7ezuDgYMbHx9NqtfLw8JDj4+M/rj9JdnZ2UqvV0tXVlfn5+by/v+fu7i4vLy+p1+tf2hsAoF10UAIA/EVarVZKpVKq1WrK5XI+Pz9zeXn5c2z44+MjGxsbKRQKmZ+fz/Dw8L+GftPT01lfX8/S0lJ6e3uzu7v7y5qOjo6cn5+nu7s7s7OzqVQqGRgYyOnp6ZfuMTk5mbOzs5ycnGR0dDRbW1tpNptZWVn50r4HBwcpl8upVqupVCqZmZlJoVBIZ2fnzzWtVivLy8tpNBoZGRnJ4uJibm9v09/f/9vn1Gq11Ov1NBqNFIvFXF1d5eLiIkNDQ1+qf21tLYeHh2m1WikWi5mbm8vR0ZEOSgDgf63j808eywEAgL/A29tb+vr6sr+/n9XV1XaXAwDwLRnxBgDg27i/v8/j42Ompqby+vqaZrOZJL/8GA4AwH9HQAkAwLeyt7eXp6en/PjxI6VSKTc3N+np6Wl3WQAA35YRbwAAAACgbXySAwAAAAC0jYASAAAAAGgbASUAAAAA0DYCSgAAAACgbQSUAAAAAEDbCCgBAAAAgLYRUAIAAAAAbSOgBAAAAADa5h9WMaRI55EnJwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAAGzCAYAAAAsf/kbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFLklEQVR4nOzdd3gU5drH8d8mpAIJIJCEHnovgiJWOEQCchSsgBxBRFQEBUFULDQLggroK4IFBD0KNkSxUAwGFCId6T0YShJqOunz/sHJkiVtN213s9/Pde2V3ZlnnrmfaTt755kZk2EYhgAAAAAAAADADtzsHQAAAAAAAAAA10WCEgAAAAAAAIDdkKAEAAAAAAAAYDckKAEAAAAAAADYDQlKAAAAAAAAAHZDghIAAAAAAACA3ZCgBAAAAAAAAGA3JCgBAAAAAAAA2A0JSgAAAAAAAAB2Q4ISAAAAAAAAgN2QoAQAAAAAAABgNyQoAQBAqTMMQ4Zh2DsMAAAAAE6ABCUAACg1CxYsUNu2beXt7S1vb2+1bdtWn3zyib3DAgAAAODAKtk7AAAAUDFMmjRJs2bN0lNPPaVu3bpJkiIiIvTMM88oKipK06ZNs3OEAAAAAByRyeD6KwAAUApq1aql9957T4MGDbIYvmTJEj311FM6d+6cnSIDAAAA4Mi4xBsAAJSKjIwMdenSJc/wzp07KzMz0w4RAQAAAHAGJCgBAECpeOihhzRv3rw8wz/66CMNHjzYDhEBAAAAcAbcgxIAABTbuHHjzO9NJpM++eQTrV69WjfccIMkadOmTYqKitKQIUPsFSIAAAAAB8c9KAEAQLH16NHDqnImk0lr164t42gAAAAAOCMSlAAAAAAAAADshku8AQAAAAAAUCJnzpzRwYMHJUktWrRQ7dq17RyR/cTHxysmJkaSFBgYKH9/fztH5PhIUAIAgFKzdetWff3114qKilJ6errFuGXLltkpKgAAANucPHlSP/74Y77nNLNmzbJTVPZR1LJITEzUk08+qaVLlyorK0uS5O7urgEDBmju3LkulZz75JNPNGvWLHOiNkeLFi00fvx4DR8+3E6ROT4SlAAAoFQsXbpUQ4YMUWhoqFavXq1evXrp0KFDio2N1d13323v8AAAAKwSFhamu+66S40bN9aBAwfUtm1bHT9+XIZh6Nprr7V3eOXKmmXx6KOPaseOHfrpp5/UrVs3SVJERITGjBmjxx9/XEuXLrVnE8rNW2+9pSlTpujpp59WaGioAgICJEmxsbFavXq1xowZo4sXL+rZZ5+1c6SOiXtQAgCAUtG+fXs9/vjjGjVqlKpWraq///5bwcHBevzxxxUUFKSpU6faO0QAAIAiXX/99erTp4+mTp1qPqepXbu2Bg8erN69e2vkyJH2DrHcWLMsKleurFWrVunmm2+2mPaPP/5Q7969lZycbKfoy1fDhg311ltv6YEHHsh3/FdffaUJEyYoKiqqnCNzDm72DgAAAFQMR48eVd++fSVJnp6eSk5Olslk0jPPPKOPPvrIztEBAABYZ//+/RoyZIgkqVKlSrp06ZKqVKmiadOmacaMGXaOrnxZsyyuueaafC/j9vf3V/Xq1cs1Xns6c+aM2rVrV+D4du3a6dy5c+UYkXMhQQkAAEpF9erVlZiYKEmqW7eu9uzZI0mKi4tTSkqKPUMDAACwWuXKlc33WgwKCtLRo0fN41wtwWTNsnj55Zc1btw480NhJCkmJkYTJkzQK6+8Ur4B29F1112nN998U5mZmXnGZWVlacaMGbruuuvsEJlz4B6UAACgVNx6661as2aN2rVrp/vvv19jxozR2rVrtWbNGvXs2dPe4QEAAFjlhhtu0J9//qlWrVrpjjvu0Pjx47V7924tW7ZMN9xwg73DK1cFLYvXX39dlSpVMt+H8vDhw2rQoIEaNGggSYqKipKXl5fOnj2rxx9/3J5NKDfvv/++QkNDFRgYqFtvvdXiHpTr16+Xp6enVq9ebecoHRf3oAQAAKXiwoULSk1NVZ06dZSdna2ZM2dq48aNatasmV5++WWXusQHAAA4r2PHjikpKUnt27dXcnKyxo8fbz6nmTVrlho2bGjvEMtNQcsiMzNToaGhqlatWpF1TJ48uewDdRCJiYn673//q7/++svcozQwMFDdunXTgw8+KD8/PztH6LhIUAIAAAAAAACwG+5BCQAAylRmZiZPKwQAAE4rNja2Qp7LZGZmas2aNVqwYIF+++03ZWVlmcdZc69NW+7HmZWVpWPHjik7O1uSlJaWpq+//lpLly5VbGys7cE7oYyMjAq5HZUWEpQAAKBM7d27V8HBwfYOAwAAoFCJiYn6z3/+o4YNG2ro0KFKT0/XqFGjFBQUpODgYN12221KSEiwd5jF9tRTT+mnn36SJJ08eVLt2rVTnz599NJLL6l3797q1KmTTp06JUkKCAhQz5499eWXXyotLS3f+gICAvSvf/2r0DKStGvXLtWvX1/NmjVThw4ddOLECXXp0kWPPPKIRowYoVatWmnLli2l32AHs2/fPs6JC0GCEgAAAAAAuLwXX3xR27Zt07PPPquoqCg98MADWr9+vf744w/9/vvvOnfunGbMmGHvMIvtm2++UaNGjSRJ48ePV7169RQTE6OYmBidOXNGDRs21NixYyVJhmHI09NTw4YNU1BQkJ566int3LnToj7DMOTl5VVoGUl67rnndNNNN+nvv/9Wz549FRoaqlatWunixYu6ePGi+vbtqxdffLFsGw+Hxz0oAQBAieQ8vbEgly5d0qFDhywuGwIAAHA0DRo00OLFi9WjRw+dPn1a9erV048//qh///vfkqSff/5Z48eP14EDB+wcafH4+PiYe/HVr19f3333na6//nrz+D179qhHjx46e/as3NzcFBMTIzc3Ny1evFgLFy7UgQMH1LFjRz366KMaPHiwqlWrVmQZPz8/1ahRQxs2bFCrVq106dIlVa1aVRs3bjTPe+/evbrttttsumTcEXFOXDKV7B0AAABwbvv27dPAgQMLvGQlOjpahw4dKueoAAAAbHPmzBk1bdpUklSnTh35+PioefPm5vFt27bViRMn7BVeiTVv3lybN29WcHCwqlatmudy9cTERPM9InPUrFlT48eP1/jx4xUREaFPPvlEzz//vJ599lnl9HcrrMy9994rwzBUqdLl9NPVfyXJ3d09z3ydEefEJUMPSgAAUCJdunTR8OHDNXLkyHzH79y5U507d+a/xQAAwKHVrVtXK1asMPeEe/DBBzVnzhzVrl1b0uWefrfccosuXLhgzzCLbdGiRXrllVf0+eef68SJE5o+fbr+7//+T61atdLBgwc1ZswYde3aVR9//LHc3d0VHR1tbntuycnJWrp0qR599FHFxsYWWmbhwoXy8fFRo0aNNHXqVC1YsECff/65brnlFi1cuFCSNGrUKO3evVvr168v82VQljgnLhl6UAIAgBK56aabdPDgwQLHV61aVbfeems5RgQAAGC79u3ba8uWLeYE5ZdffmkxfsuWLWrVqpU9QisVDz/8sC5cuKC+ffvKMAxlZWWpV69e5vF33XWXZs+eLUkqrC9b5cqVNXz4cI0YMaLIMsOHD9eWLVvUp08fffrpp7rmmmv0+++/a/jw4QoKCpKbm5suXryoFStWlF5D7YRz4pKhByUAAAAAAHB5Fy5ckJubm6pVq5bv+F9//VU+Pj7q3r17ucZV2uLi4rRmzRodO3ZM2dnZCgoK0k033aRmzZqZyyxevFgDBw6Ul5dXgfVYUyZHcnKyDhw4oBYtWqhKlSpKTU3VF198oUuXLun2229XixYtSqVtcF4kKAEAAAAAAADYjZu9AwAAAM5tyJAhSkxMNH/++++/lZGRYceIAAAAbFfRz2lsaZ81Za2tr6Iv1xyu0s6yQg9KAABQIlffRN3Pz087d+5U48aN7RwZAACA9Sr6OY0t7bOmrLX1VfTlmsNV2llW6EEJAABK5Or/dfK/TwAA4Iwq+jmNLe2zpqy19VX05ZrDVdpZVkhQAgAAAAAAALCbSvYOAAAAOL99+/YpJiZG0uX/Fh84cEBJSUkWZdq3b2+P0AAAAKxW0c9pbGmfNWWtKWPrfJ2Zq7SzLHAPSgAAUCJubm4ymUz5XsaSM9xkMikrK8sO0QEAAFinop/T2NI+a8oahiE3N7ci68v9t6j5OrOKvv2UNXpQAgCAEomMjLR3CAAAACVW0c9pbGmfNWVPnjypevXqlSSkCqWibz9ljR6UAAAAAAAAAOyGh+QAAIAytWzZMu61AwAAnF5FP6expX3WlLW2voq+XHO4SjuLiwQlAAAosQ8//FD33XefHnzwQW3atEmStHbtWnXq1EkPPfSQbrrpJjtHCAAAULSKfk5jS/usKWttfRV9ueZwlXaWCQMAAKAEpk+fbnh4eBidO3c2KleubPj6+hqvv/66ERgYaEyfPt24cOGCvUMEAAAoUkU/p7GlfdaUtba+ir5cc7hKO8sKD8kBAAAl8umnn+rjjz/W0KFD9ccff+i2227Txo0bdeTIEVWuXNne4QEAAFilop/T2NI+a8paW19FX645XKWdZYWH5AAAgBLx8fHRoUOHVL9+fUmSl5eXNm7cqM6dO9s5MgAAAOtV9HMaW9pnTVlr66voyzWHq7SzrHAPSgAAUCJpaWny9vY2f/b09FSNGjXsGBEAAIDtKvo5jS3ts6astfVV9OWaw1XaWVa4xBsAAJTYK6+8Il9fX0lSenq6XnvtNfn7+1uUmTVrlj1CAwAAsFpFP6expX1FlTUMw6r6bJ2vM3OVdpYFLvEGAAAl0r17d5lMpkLLmEwmrV27tpwiAgAAsF1FP6expX3WlN25c6c6duxYZH3Z2dkVernmqOjbT1kjQQkAAErVuXPnJEk1a9a0cyQAAADFV9HPaWxpnzVlra2voi/XHK7SztLCPSgBAECJxcXFadSoUapZs6YCAgIUEBCgmjVravTo0YqLi7N3eAAAAFZx5HOaRx55xKpXYWxpnzVlra3PkZdraXKVdpYFelACAIASuXDhgrp166ZTp05p8ODBatWqlSRp3759+vLLL1W/fn1t3LhR1atXt3OkAAAABXP0cxo3Nzc1bNhQnTp1UmGpnO+//z7f4ba0z5qyP//8s/r06VNkfYZhOPRyLS2Ovv04OhKUAACgRMaOHauwsDD99ttvCggIsBgXExOjXr16qWfPnpo9e7adIgQAoGKIiIjQ+fPn9e9//9s87LPPPtPkyZOVnJys/v376//+7//k5eVlxyidl6Of04waNUpLlixRw4YNNWzYMP3nP/+x6SnRtrTPmrLu7u7KzMwssj7DMOy6XN3c3Ky6N2RmZmaJ5uPo24+jI0EJAABKpFGjRvrwww8VGhqa7/iVK1fqiSee0PHjx8s3MAAAKpg+ffqoe/fuev755yVJu3fv1rXXXquHH35YrVq10ltvvaXHH39cU6ZMsW+gTqoszmnuuOMOLVmyxPwk5zfffFNPPPGEqlWrJkk6f/68brnlFu3bt8+q+tLS0rRs2TItXLhQGzduVN++fTV8+HD16tWryCScLe2zpuy///1v/fzzz0XWJ8mu54o//PBDgeMiIiL03nvvKTs7W6mpqSWaD+fEJUOCEgAAlIiXl5eOHj2qevXq5Tv+5MmTatq0aYlP+gAAcHVBQUFasWKFunTpIkl66aWXtG7dOv3555+SpG+++UaTJ0+2OtkFS2VxTuPu7q7o6GjVrl1bkuTn56edO3eqcePGkqTY2FjVqVNHWVlZNsf7zz//aNGiRfrss8+UmZmpvXv3qkqVKgWWt6V91pStX7++Tpw4UWR9hmE43LniwYMH9cILL2jFihUaPHiwpk2bpoYNG5aoTs6JS4aH5AAAgBKpWbNmof8JjoyMtOnyIwAAkL+LFy9aXDq6bt069enTx/z5uuuu04kTJ+wRWoVQFuc0V/cJK80+YjmXLhuGYVWC05b2WVPWzc3Nqvoc6Vzx9OnTGjFihNq1a6fMzEzt3LlTixcvLnFyUuKcuKRIUAIAgBIJDQ3VSy+9pPT09Dzj0tLS9Morr6h37952iAwAgIolICBAkZGRkqT09HRt375dN9xwg3l8YmKiPDw87BWe03OGc5q0tDQtWbJEt99+u5o3b67du3fr/fffV1RUVKG9JyXb2mdN2SZNmlhVnyMs1/j4eD3//PNq2rSp9u7dq7CwMK1YsUJt27YttXk4QjudGZd4AwCAEjl58qS6dOkiLy8vjRo1Si1btpRhGNq/f78++OADpaWlaevWrapfv769QwUAwKmNHDlSf//9t2bMmKHly5dr8eLFOn36tDw9PSVJX3zxhebMmaMtW7bYOVLnVBbnNO7u7oqJiVGtWrUkSVWrVtWuXbsUHBwsybZLvJ988kktXbpU9evX1yOPPKLBgwerZs2aZdI+a8quWLFCd911V5H1mUwmu54rzpw5UzNmzFBgYKDeeOMN9evXr0zmwzlxyZCgBAAAJRYZGaknn3xSq1evNl+6ZDKZdPvtt+v9999X06ZN7RwhAADO79y5c7rnnnv0559/qkqVKlq8eLHuvvtu8/iePXvqhhtu0Ouvv27HKJ1baZ/TuLm5qU+fPuYnq69YsUL/+te/VLlyZUmXe9atXLnSqgSlm5ubGjRooE6dOhX6QJxly5YVOM6W9llT1tr67Hmu6ObmJh8fH4WEhMjd3b3AcoUtN2txTlx8JCgBAECpuXjxog4fPixJatq0KffZAQCgDMTHx6tKlSp5ki0XLlxQlSpVzD0qUXyldU4zbNgwq8p9+umnRZZ5+OGHi3xSt7V12dI+a8paW589zhVLc7lZi3Ni25GgBAAAAAAAAGA3PCQHAAAAAAAAgN2QoAQAAAAAAABgNyQoAQBAmUhLS9OUKVOUlpZm71AAAKiw+L4tW2WxfEuzztKoy9o6SrOcvbfb8py/vdvqLLgHJQAAKBMJCQny9/dXfHy8/Pz87B0OAAAVEt+3Zasslm9p1lkadVlbR2mWs/d2W57zt3dbnQU9KAEAAAAAAADYDQlKAAAAAAAAAHZTyd4BOKKsrCwdOnRIVapUkclksnc4AAA4pcTEREnSqVOnlJCQYOdoAAComPi+LVtlsXxLs87SqMvaOkqznL232/Kcv73bak+GYSgpKUnNmzeXu7t7oWW5B2U+9u/fr9atW9s7DAAAAAAAAMCp7du3T61atSq0DD0o8xEUFCTp8gKsWrWqnaMpf5mZmYqKipKbm5sqVWITAQAAAGAfqRmpOplwUvXr1peXh5e9w4ETyszOVHpGuhQveXp4lvtv3MzMTKVnpkv+kmclT1Vyyzv/zOxMZRvZCqocpOhT0WX+W7yw/So1PVUnT55U/Wq27XP51VncuqxZZo6soG0uMzNT2dnZatCggcvkWhITE9W6dWtznq0wrrFEbOTmdvnWnHXr1nXJJyxlZGQoPT1dXl5e8vDwsHc4AAAAAFxUSlqK0s6nqW7duvL19rV3OHBCGVkZSrqUJPlIVXyrlPtv3IyM/82/mlTFu4o83PPOPyMrQ2mZaapbpa6MLKPMf4sXtl+lpKYoLT1NdWvZts/lV2dx67JmmTmygra5jIwMpaVdXkaukmvJuaQ9J89WGB6SAwAAAAAAAMBuSFDCZb3zzju6/fbby3WeJ06cUN26dbVnz55yna+rGzt2rB555BF7hwEAAAAAAPJBgtKFJSYmauzYsWrYsKF8fHx04403asuWLRZlzp49q7Fjx+raa69VkyZNNHjwYB07dqzQeu+77z7VrVs3z+uhhx7Kt/zzzz+vunXr6uOPPzYPS0tL01NPPaUWLVro5ptv1vr16y2mmTdvnl5++eVitvyyJ554Ql999ZX5M0ksacWKFbr11lvVuHFj9ezZU2FhYXaJY+PGjapbt67i4+Ntmq6gBPC0adM0e/bs0gwRAAAAAIBimz59uq677jpVrVpVtWvXVv/+/XXw4EGLMkePHtXdd9+tWrVqyc/PTw888IBiY2PN48PDw2UymfJ9XZ3fkaQjR46oatWqqlatmsXwjz/+WLfccouqV6+u6tWrKyQkRJs3by6TdheEBKULe/TRR7VmzRp9/vnn2r17t3r16qWQkBCdOnVK0uXHwT/yyCOKiorSwoULtWrVKtWtW1cDBw5USkpKgfV+/PHH2rFjh/m1du1aubu769///neesr/++qu2b9+uwMBAi+FffPGFdu/erR9//FH/+c9/NHr0aOU8cD4qKkpffPGFnn/++RK1v3LlyqpRo0aJ6qhItmzZolGjRmnQoEFatWqVQkNDNXz4cB04cMDeoZWYn5+f/P397R0GAAAAAACSpHXr1mnUqFH666+/tGbNGmVkZKhXr15KTk6WJCUnJ6tXr14ymUxau3atNmzYoPT0dN15553Kzs6WJN14442Kjo62eD366KMKDg5Wly5dLOaXkZGhQYMG6ZZbbskTS3h4uAYNGqTff/9dERERql+/vnr16mXOD5UHEpQu6tKlS/ruu+80c+ZM3XrrrWratKmmTJmipk2b6sMPP5QkRUZGavv27Zo+fbo6duyopk2b6s0331RqaqqWL19eYN3Vq1dX7dq1za/169fLx8dHd955p0W56Ohovfzyy3r//ffzPMHq8OHD6tWrl1q0aKGhQ4fq/PnzunDhgiRp4sSJeumll6x6wvrGjRvVt29fNW3aVK1atVK/fv108uRJSZaXeL/zzjv65ptvzEnYunXrauPGjZKkU6dO6fHHH1erVq3Upk0bDRs2TCdOnLBqHgWJiorSfffdpyZNmigkJERbt241j7tw4YKefPJJde7cWU2aNFHPnj0tlvd///tfXXvtteYDUo5hw4Zp3Lhx5s85ScbGjRurW7dumjVrljIzMwuMacGCBerevbtGjhypZs2a6bnnnlPbtm316aefFjhNzjJcunSprrvuOjVr1kwTJ05UVlaWPvjgA3Xs2FHt27fXu+++a54mv16O8fHx5mV+4sQJ3X///ZKk1q1bq27duho7dqwk6ffff1f//v3N62LIkCE6fvy4uZ4bbrhBkhQaGqq6devqvvvuk5S3d2xaWppeeeUVtW/fXo0bN1b//v21c+dO8/icHpx//PGH+vTpoyZNmuiuu+7SkSNHzGX27t2r++67T82bN1eLFi3Uu3dv/f333wUuKwAAAAAAcqxcuVIPP/yw2rRpow4dOmjRokWKiorStm3bJEkbNmzQ8ePHtWjRIrVr107t2rXT4sWLtXXrVq1du1aS5OnpqcDAQPPrmmuu0Q8//KBhw4bJZDJZzO/ll19Wy5Yt9cADD+SJ5YsvvtCTTz6pjh07qmXLlvrkk0+UnZ1drldVkqB0UZmZmcrKypK3t7fFcB8fH3NiLj09XZLk5eVlHu/m5iZPT0+buvouXbpU/fr1k6/vlad2ZWdn6+mnn9bIkSPVokWLPNO0bt1amzdv1qVLl7Ru3ToFBASoRo0aWrZsmby8vNSnTx+r2jh8+HDdcMMN+u233/Tjjz9q8ODBeXZS6fLl3nfeead69Ohh7vnZpUsXZWRkaPDgwapSpYqWLVum5cuXq3Llyho8eLDS09NtmkduM2bM0BNPPKHVq1ercePGGjVqlDl5mJaWpvbt22vx4sVau3atBg8erKefflo7duyQJP373//WxYsXtWHDBnN9Fy9eVHh4uO6++25J0qZNmzRmzBgNHz5cv//+u2bMmKGvv/5a7733XoExbdu2Lc9/Urp3724+OBbkn3/+0dq1a/XFF19o7ty5Wrp0qYYMGaLo6Gh9++23eumllzRz5kxt37690Hpy1KlTx3y5//r167Vjxw5NmzZNkpSSkqLHHntMv/zyi7766iu5ubnp0UcfNSdrf/75Z0mXt7kdO3ZY3DYgt9dff12//PKL5syZo5UrV6pRo0YaPHiwLl68aFFuxowZmjRpkn799VdVqlRJ48ePN4976qmnFBQUpF9++UW//vqrRo0alSfRDgAAAACANXJucZZzpWdaWppMJpNFTsbb21tubm76888/863jxx9/1Pnz5zVs2DCL4WvXrtU333yjuXPnWhVLSkqKMjIyyvWqU35Nu6iqVauqW7duevXVV9WqVSsFBARoyZIlioiIUJMmTSRJTZo0Ud26dTV9+nTNmDFDvr6++vjjjxUdHa0zZ85YNZ8dO3bowIEDevvtty2Gz507V5UqVdLw4cPznW7gwIHav3+/evTooRo1amj+/PmKi4vT22+/rW+++UYzZszQjz/+qIYNG+qdd95RUFBQnjoSExOVkJCgkJAQNWrUSJLUrFmzfOdXuXJleXt7Kz09XbVr1zYP/+6775Sdna23337bnHScNWuWWrVqpYiICLVv397qeeT2xBNPKCQkRJL07LPPqkePHjp+/LiaNm2qoKAgPfHEE+ayjzzyiMLDw7VixQp16tRJ1apVU48ePbR8+XJzQvHnn39WjRo1dNNNN5ljHDVqlPk/Iw0bNtSECRP0+uuvW/SyzO3s2bOqVauWxbCaNWvq7NmzhbYlOztbs2bNUpUqVdS8eXPdeOONOnr0qD7//HO5ubmpadOmmjt3rjZu3Khrr722yGXj7u5uvh9GzZo1LS7N7tu3r0XZWbNmqV27djp06JBatmypa665RtKVXrz5SUlJ0WeffabZs2frX//6lyTprbfe0g033KClS5dq5MiR5rLPP/+8unXrJkkaNWqUhgwZotTUVHl7e+vUqVN64okn1LRpU0lS48aNi2wbAAAAAABXy87O1tixY3XTTTepbdu2ki5fIVi5cmU9//zzeuONN2QYhl544QVlZWUpOjo633oWLFig0NBQ1atXzzzs/Pnzevjhh/Xf//5Xfn5+VsXz/PPPq06dOua8RXmwaw9Ka24Imp9vvvlGLVu2lLe3t9q1a6dffvnFYrxhGJo0aZKCgoLk4+OjkJAQHT58uKya4bQ+//xzGYahunXrysvLS++9954GDRokN7fLm4WHh4c++eQTHTt2TG3atFHTpk21ceNG/etf/zKXKcqSJUvUqlUrderUyTxs165dWrBggWbPnl1gT0MPDw+98cYb+uuvv/TLL7/o+uuv17Rp0/TII49o7969WrVqldasWaNrr71WkyZNyreO6tWr64EHHtDgwYM1dOhQffLJJxY3k7XGvn37dPz4cTVv3lzNmjVTs2bN1KZNG6Wlpen48ePFnkerVq3M73MSaefOnZMkZWVlafbs2erZs6fatGmjZs2aad26dRb3frj77rv1yy+/KC0tTZL0/fff66677jKvl3379mnOnDnmmHMu2Y6NjdWlS5dsWgZFqV+/vqpUqWL+XLNmTTVr1sxiG6lVq5a5fSVx7NgxPfnkk+rWrZtatGihrl27SpJN98U4fvy4MjIydN1115mHeXh4qGPHjnmOE61btza/DwgIkHT54C5Jjz32mCZMmKABAwbo/ffft7jUHAAAAAAAa40aNUp79uzR0qVLzcNq1aqlb775RitWrFCVKlXk7++vuLg4XXvttfnmZE6ePKlVq1bl6Qg2YsQIPfjgg7r11lutiuXNN9/U0qVL9f333+e56rYs2TVBWdQNQfOzceNGDRo0SMOHD9eOHTvUv39/9e/f3+J+djNnztR7772n+fPna9OmTapcubJCQ0OVmppaHs1yGk2aNNG6deuUlJSkEydOaPPmzcrIyLDoCda+fXutWbNG+/fv144dO/TFF1/o4sWLatCgQZH1p6Sk6Mcff9TAgQMthm/atEnnzp3T9ddfrwYNGqhBgwY6efKkpk2bZk44XW3Dhg06dOiQhg0bZk6S+vr66s477zRfkp6f2bNn68cff1SXLl30448/6pZbbinykuXckpOT1b59e61evdri9ccff5gvpy7OPHJfCpyTpM25THnevHlasGCBnnzySX399ddavXq1brvtNmVkZJinuf3222UYhsLCwnTq1Clt2rRJ99xzj3l8SkqKxo8fbxHzb7/9pj///NOie3hutWrVytNb8ty5c3l6VRbWlpz2eHh45BmW0778DqSF3Rszt4cfflhxcXGaOXOmfvrpJ/3000+SZLFsSlN+l2zntGP8+PFau3atevbsqQ0bNqhHjx769ddfyyQOAAAAAEDFNHr0aP3000/6/fffLXo+SlKvXr109OhRnTlzRufOndPnn3+uU6dO5XsF36effqprrrlGd911l8XwtWvX6u2331alSpXMV7LGx8erUqVKWrhwoUXZt99+W2+++aZWr16t9u3bl35jC2HXS7xXrlxp8XnRokWqXbu2tm3bVmBm991331Xv3r01YcIESdKrr76qNWvW6P3339f8+fNlGIbmzJmjl19+Wf369ZMkffbZZwoICNDy5cvzJMtw+fLmypUr6+LFi1q1apWmT5+ep0xON+Bjx47p77//Ni//wqxYsULp6ekWiTNJuvfee/Pc63Dw4MG69957871Za2pqql566SW9//77cnd3V3Z2tjkhlZGRkedhMVdr27at2rZtq6eeekp33nmnli9frs6dO+cp5+npqaysLIth7dq104oVK1SzZs1CH8pj7TyssWXLFoWGhuree++VdDkhduzYMTVv3txcxtvbW3369NH333+v48ePq0mTJmrXrp1FPEePHlVwcLDV8+3cubP+/PNPjRgxwjxs/fr1xW5HQXLuYREbG2vuur53716LMjkJztzr48KFCzp69KjeeustcyL76nuh5kxX2DbRqFEjeXp6asuWLeaDf0ZGhnbu3GnRdms0adJETZo00WOPPaYnn3xSX331lVX3RwUAAAAAuKZL6VnaG5Os9nX99PTTT+v7779XeHh4ob/fa9asKelysvHMmTN5kpCGYejTTz/VkCFD8nQYioiIsPht/cMPP2jGjBnmh8PmmDlzpl5//XWtWrUqzxPAy4ND3YPy6huC5iciIiLPPfRCQ0PNTzmOjIxUTEyMxXXy/v7+6tq1qyIiIvJNUKalpZkvlZWkhISEkjTDaaxatUqGYahFixY6cuSIJkyYoJYtW2ro0KHmp1CvWLFC11xzjerWrasDBw5o0qRJ6t27t2677TZzPU8//bSCgoI0ceJEi/qXLl2q0NDQPOuzRo0aeYZVqlRJtWrVMt/PL7c5c+boX//6lzmZ1aVLF7322msaMGCAFi1aVOCOExUVpS+++EK33367AgMDdfToUUVGRpqf7Hy1evXqKTw8XEeOHFGNGjVUtWpV3XPPPZo3b56GDRumCRMmKCgoSCdPntSvv/6qkSNHKjMz06Z5WCM4OFg///yztmzZomrVqumjjz7SuXPnLBKU0uXLvB9++GEdPHgwTxL4mWee0dChQ1W3bl317dtXbm5u2rdvnw4cOKDnn38+3/kOHz5c9913n+bPn6+QkBD98MMP2rVrl2bOnFnstuTHx8dH1157rebOnasGDRro3LlzeeZRr149mUwm/fbbb+rZs6e8vb1VrVo1Va9eXf/9739Vu3ZtnTp1Kk8yvWbNmvL29tbvv/+uoKAgeXl55bnHhq+vrx566CG99tprqlatmurWrasPPvhAqampVv8D49KlS3rttdfUt29fNWjQQNHR0fr77791xx13lGzhAAAAAAAqtCGLtmrniXg1O7xUW8JW6IcfflDVqlUVExMj6XIOy8fHR9LlXpGtWrVSrVq1FBERoTFjxuiZZ57J87DhtWvXKjIyUo8++mie+eW+xZwkbd26VW5ubuYci3TlAbFffvmlGjVqZI6lSpUqFrd0K0sOk6DM74ag+YmJiTHfCy5HQECAeeHl/C2szNWmT5+uqVOnliR8pxQfH6+JEyfq5MmTqlGjhu699169/vrrFtn2M2fOaOrUqTp37pxq166t++67T2PHjrWo5/Tp03ku2z1y5Ig2b96sJUuWlCjGAwcOaMWKFVqzZo152L///W9FRETonnvuUZMmTfT+++/nO62Pj4+OHDmib775RhcvXlTt2rX18MMP66GHHsq3/ODBgxUREaE77rhDycnJ+uabb3TjjTdq2bJlev311/Xoo48qOTlZgYGBuvnmm1W1alWlpqbaNA9rjBkzRlFRURo8eLB8fHw0ePBghYaGKjEx0aLczTffrGrVquno0aPmy81zdO/eXYsXL9bs2bM1d+5ceXh4qGnTpho0aFCB873uuuv0/vvva+bMmZoxY4aCg4O1YMECtWzZsthtKcisWbM0fvx49e7dW02aNNHLL79sEVtQUJDGjx+v6dOna9y4cbrvvvs0Z84cffDBB5o0aZJ69uypxo0b69VXX7VIBleqVEmvvvqqZs+erbfffltdu3bVt99+m2f+L774ogzD0NNPP22+jP+LL74wP5ynKO7u7rp48aLGjBmjc+fOqUaNGurTp4/FU74BAAAAALjazhOXO+f9tuy/ki7/fs/t008/1cMPPyxJOnjwoCZOnKgLFy6oUaNGeumll/TMM8/kqXPBggW68cYbi/37fd68eUpPT8/T2Wry5MmaMmVKseq0lckwDKNc5lSEkSNH6tdff9Wff/6Z55r73Dw9PbV48WKLZMYHH3ygqVOnKjY2Vhs3btRNN92k06dPWzzZ+YEHHpDJZNJXX32Vp878elDWr19f8fHxVj/hqCLJyMhQZGSkvLy88nQNBgAAAIDykpKWoqPnj6pJwyby9fa1dzhwQhlZGUq6lCTFSVV8q5T7b9yMjP/Nv5pUxbuKPNzzzj8jK0NpmWmqV6WeTkadLPPf4oXtVympKTp67Kia1LJtn8uvzuLWZc0yc2QFbXMZGRlKS0tTr4WXH87aoX41/TDqJjtGWvYSEhLk7+9vVX7NIXpQ5twQdP369YUmJyUpMDAwz1OSY2NjFRgYaB6fMyx3gjI2NlYdO3bMt04vL68CHxwCAAAAAAAAoOzY9SnehmFo9OjR+v7777V27VqrHujRrVs3hYWFWQxbs2aNunXrJuny/fsCAwMtyiQkJGjTpk3mMgAAAAAAAAAcg117UI4aNUpffvlloTcEHTJkiOrWrWt+GMaYMWN022236Z133lHfvn21dOlSbd26VR999JEkyWQyaezYsXrttdfUrFkzBQcH65VXXlGdOnXUv39/u7QTAAAAAAAAQP7smqCcN2+epMJvCBoVFWXxAJYbb7xRX375pV5++WW9+OKLatasmZYvX27xYJ3nnntOycnJeuyxxxQXF6ebb75ZK1eulLe3d5m3CQAAAAAAAID17JqgtOb5POHh4XmG3X///br//vsLnMZkMmnatGmaNm1aScIDAAAAAAAAUMbseg9KAAAAAAAAAK6NBCUAAAAAAAAAuyFBCQAAAAAAAMBuSFACAAAAAAAAsBsSlAAAAAAAAADshgQlAAAAAAAAALshQQkAAAAAAACUJ8OwdwQOhQQlAAAAAAAAALshQQkAAAAAAADAbkhQAgAAAAAAALAbEpQAAAAAAAAA7IYEJQAAAAAAAAC7IUEJAAAAAAAAwG5IUAIAAAAAAACwGxKUAAAAAAAAAOyGBCUAAAAAAAAAuyFBCQAAAAAAAMBuSFACAAAAAAAAsBsSlAAAAAAAAADshgQlAAAAAAAAALshQQkAAAAAAADAbkhQAgAAAAAAALAbEpQAAAAAAAAA7IYEJQAAAAAAAAC7sWuCcv369brzzjtVp04dmUwmLV++vNDyDz/8sEwmU55XmzZtzGWmTJmSZ3zLli3LuCUAAAAAAAAAisOuCcrk5GR16NBBc+fOtar8u+++q+joaPPrxIkTqlGjhu6//36Lcm3atLEo9+eff5ZF+AAAAAAAAABKqJI9Z96nTx/16dPH6vL+/v7y9/c3f16+fLkuXryoYcOGWZSrVKmSAgMDSy1OAAAAAAAAAGXDqe9BuWDBAoWEhKhhw4YWww8fPqw6deqocePGGjx4sKKiogqtJy0tTQkJCRYvAAAAAAAAAGXPaROUp0+f1q+//qpHH33UYnjXrl21aNEirVy5UvPmzVNkZKRuueUWJSYmFljX9OnTzb0z/f39Vb9+/bIOHwAAAAAAAICcOEG5ePFiVatWTf3797cY3qdPH91///1q3769QkND9csvvyguLk5ff/11gXVNnDhR8fHx5teJEyfKOHoAAAAAAAAAkp3vQVlchmFo4cKFeuihh+Tp6Vlo2WrVqql58+Y6cuRIgWW8vLzk5eVV2mECAAAAAAAAKIJT9qBct26djhw5ouHDhxdZNikpSUePHlVQUFA5RAYAAAAAAADAFnZNUCYlJWnnzp3auXOnJCkyMlI7d+40P9Rm4sSJGjJkSJ7pFixYoK5du6pt27Z5xj377LNat26djh8/ro0bN+ruu++Wu7u7Bg0aVKZtAQAAAAAAAGA7u17ivXXrVvXo0cP8edy4cZKkoUOHatGiRYqOjs7zBO74+Hh99913evfdd/Ot8+TJkxo0aJDOnz+vWrVq6eabb9Zff/2lWrVqlV1DAAAAAAAAABSLXROU3bt3l2EYBY5ftGhRnmH+/v5KSUkpcJqlS5eWRmgAAAAAAABAmSg4G+aanPIelAAAAAAAAAAqBhKUAAAAAAAAAOyGBCUAAAAAAAAAuyFBCQAAAAAAAMBuSFACAAAAAAAAsBsSlAAAAAAAAADshgQlAAAAAAAAALshQQkAAAAAAADAbkhQAgAAAAAAALAbEpQAAAAAAAAA7IYEJQAAAAAAAAC7IUEJAAAAAAAAwG5IUAIAAAAAAACwGxKUAAAAAAAAAOyGBCUAAAAAAAAAuyFBCQAAAAAAAMBuSFACAAAAAAAAsBsSlAAAAAAAAADshgQlAAAAAAAAALshQQkAAAAAAADAbkhQAgAAAAAAALAbEpQAAAAAAAAA7IYEJQAAAAAAAAC7IUEJAAAAAAAAwG7smqBcv3697rzzTtWpU0cmk0nLly8vtHx4eLhMJlOeV0xMjEW5uXPnqlGjRvL29lbXrl21efPmMmwFAAAAAAAAgOKya4IyOTlZHTp00Ny5c22a7uDBg4qOjja/ateubR731Vdfady4cZo8ebK2b9+uDh06KDQ0VGfOnCnt8AEAAAAAAACUUCVbJ7h06ZIMw5Cvr68k6Z9//tH333+v1q1bq1evXjbV1adPH/Xp08fWEFS7dm1Vq1Yt33GzZs3SiBEjNGzYMEnS/Pnz9fPPP2vhwoV64YUXbJ4XAAAAAAAAgLJjcw/Kfv366bPPPpMkxcXFqWvXrnrnnXfUr18/zZs3r9QDzE/Hjh0VFBSk22+/XRs2bDAPT09P17Zt2xQSEmIe5ubmppCQEEVERBRYX1pamhISEixeAAAAAAAAQFkwDHtH4FhsTlBu375dt9xyiyTp22+/VUBAgP755x999tlneu+990o9wNyCgoI0f/58fffdd/ruu+9Uv359de/eXdu3b5cknTt3TllZWQoICLCYLiAgIM99KnObPn26/P39za/69euXaTsAAAAAAAAAXGbzJd4pKSmqWrWqJGn16tW655575ObmphtuuEH//PNPqQeYW4sWLdSiRQvz5xtvvFFHjx7V7Nmz9fnnnxe73okTJ2rcuHHmzwkJCSQpAQAAAAAAgHJgcw/Kpk2bavny5Tpx4oRWrVplvu/kmTNn5OfnV+oBFuX666/XkSNHJEk1a9aUu7u7YmNjLcrExsYqMDCwwDq8vLzk5+dn8QIAAAAAAABQ9mxOUE6aNEnPPvusGjVqpK5du6pbt26SLvem7NSpU6kHWJSdO3cqKChIkuTp6anOnTsrLCzMPD47O1thYWHmOAEAAAAAAAA4Dpsv8b7vvvt08803Kzo6Wh06dDAP79mzp+6++26b6kpKSjL3fpSkyMhI7dy5UzVq1FCDBg00ceJEnTp1yvxQnjlz5ig4OFht2rRRamqqPvnkE61du1arV6821zFu3DgNHTpUXbp00fXXX685c+YoOTnZ/FRvAAAAAAAAAI7D5gSlJAUGBua5ZPr666+3uZ6tW7eqR48e5s8594EcOnSoFi1apOjoaEVFRZnHp6ena/z48Tp16pR8fX3Vvn17/fbbbxZ1DBgwQGfPntWkSZMUExOjjh07auXKlXkenAMAAAAAAADA/mxOUCYnJ+vNN99UWFiYzpw5o+zsbIvxx44ds7qu7t27yyjkueqLFi2y+Pzcc8/pueeeK7Le0aNHa/To0VbHAQAAAAAAAMA+bE5QPvroo1q3bp0eeughBQUFyWQylUVcAAAAAAAAAFyAzQnKX3/9VT///LNuuummsogHAAAAAAAAgAux+Sne1atXV40aNcoiFgAAAAAAAAAuxuYE5auvvqpJkyYpJSWlLOIBAAAAAAAA4EJsvsT7nXfe0dGjRxUQEKBGjRrJw8PDYvz27dtLLTgAAAAAAAAAFZvNCcr+/fuXQRgAAAAAAAAAXJHNCcrJkyeXRRwAAAAAAAAAXJDNCcoc27Zt0/79+yVJbdq0UadOnUotKAAAAAAAAACuweYE5ZkzZzRw4ECFh4erWrVqkqS4uDj16NFDS5cuVa1atUo7RgAAAAAAAAAVlM1P8X7qqaeUmJiovXv36sKFC7pw4YL27NmjhIQEPf3002URIwAAAAAAAIAKyuYelCtXrtRvv/2mVq1amYe1bt1ac+fOVa9evUo1OAAAAAAAAAAVm809KLOzs+Xh4ZFnuIeHh7Kzs0slKAAAAAAAAACuweYE5b/+9S+NGTNGp0+fNg87deqUnnnmGfXs2bNUgwMAAAAAAABQsdmcoHz//feVkJCgRo0aqUmTJmrSpImCg4OVkJCg//u//yuLGAEAAAAAAABUUDbfg7J+/fravn27fvvtNx04cECS1KpVK4WEhJR6cAAAAAAAAAAqNpsTlJJkMpl0++236/bbby/teAAAAAAAAAC4EKsSlO+9954ee+wxeXt767333iu07NNPP10qgQEAAAAAAACo+KxKUM6ePVuDBw+Wt7e3Zs+eXWA5k8lEghIAAAAAAACA1axKUEZGRub7HgAAAAAAAABKwuaneE+bNk0pKSl5hl+6dEnTpk0rlaAAAAAAAAAAuAabE5RTp05VUlJSnuEpKSmaOnVqqQQFAAAAAAAAVFSGDHuH4FBsTlAahiGTyZRn+N9//60aNWqUSlAAAAAAAAAAXINV96CUpOrVq8tkMslkMql58+YWScqsrCwlJSXpiSeeKJMgAQAAAAAAAFRMVico58yZI8Mw9Mgjj2jq1Kny9/c3j/P09FSjRo3UrVu3MgkSAAAAAAAAQMVkdYJy6NChkqTg4GDdeOON8vDwKPHM169fr7feekvbtm1TdHS0vv/+e/Xv37/A8suWLdO8efO0c+dOpaWlqU2bNpoyZYpCQ0PNZaZMmZLnXpgtWrTQgQMHShwvAAAAAAAAgNJl8z0ob7vtNnNyMjU1VQkJCRYvWyQnJ6tDhw6aO3euVeXXr1+v22+/Xb/88ou2bdumHj166M4779SOHTssyrVp00bR0dHm159//mlTXAAAAAAAAADKh9U9KHOkpKToueee09dff63z58/nGZ+VlWV1XX369FGfPn2sLj9nzhyLz2+88YZ++OEHrVixQp06dTIPr1SpkgIDA62uFwAAAAAAAIB92NyDcsKECVq7dq3mzZsnLy8vffLJJ5o6darq1Kmjzz77rCxiLFB2drYSExPzPD388OHDqlOnjho3bqzBgwcrKiqq0HrS0tJK1BMUAAAAAAAAQPHYnKBcsWKFPvjgA917772qVKmSbrnlFr388st644039MUXX5RFjAV6++23lZSUpAceeMA8rGvXrlq0aJFWrlypefPmKTIyUrfccosSExMLrGf69Ony9/c3v+rXr18e4QMAAAAAAAAuz+YE5YULF9S4cWNJkp+fny5cuCBJuvnmm7V+/frSja4QX375paZOnaqvv/5atWvXNg/v06eP7r//frVv316hoaH65ZdfFBcXp6+//rrAuiZOnKj4+Hjz68SJE+XRBAAAAAAAAMDl2ZygbNy4sSIjIyVJLVu2NCf+VqxYoWrVqpVqcAVZunSpHn30UX399dcKCQkptGy1atXUvHlzHTlypMAyXl5e8vPzs3gBAAAAAAAAKHs2JyiHDRumv//+W5L0wgsvaO7cufL29tYzzzyjCRMmlHqAV1uyZImGDRumJUuWqG/fvkWWT0pK0tGjRxUUFFTmsQEAAAAAAACwjc1P8X7mmWfM70NCQnTgwAFt27ZNTZs2Vfv27W2qKykpyaJnY2RkpHbu3KkaNWqoQYMGmjhxok6dOmV++M6XX36poUOH6t1331XXrl0VExMjSfLx8ZG/v78k6dlnn9Wdd96phg0b6vTp05o8ebLc3d01aNAgW5sKAAAAAAAAoIzZ3IPys88+U1pamvlzw4YNdc8996hly5Y2P8V769at6tSpkzp16iRJGjdunDp16qRJkyZJkqKjoy2ewP3RRx8pMzNTo0aNUlBQkPk1ZswYc5mTJ09q0KBBatGihR544AFdc801+uuvv1SrVi1bmwoAAAAAAACgjNncg3LYsGHq3bu3xYNpJCkxMVHDhg3TkCFDrK6re/fuMgyjwPGLFi2y+BweHl5knUuXLrV6/gAAAAAAAADsy+YelIZhyGQy5Rl+8uRJ82XWAAAAAAAAAGANq3tQdurUSSaTSSaTST179lSlSlcmzcrKUmRkpHr37l0mQQIAAAAAAAComKxOUPbv31+StHPnToWGhqpKlSrmcZ6enmrUqJHuvffeUg8QAAAAAAAAQMVldYJy8uTJkqRGjRppwIAB8vb2LrOgAAAAAAAAALgGmx+SM3To0LKIAwAAAAAAAIALsjlB6ebmlu9DcnJkZWWVKCAAAAAAAAAArsPmBOWyZcssEpQZGRnasWOHFi9erKlTp5ZqcAAAAAAAAAAqNpsTlDkPy8ntvvvuU5s2bfTVV19p+PDhpREXAAAAAAAAABfgVloV3XDDDQoLCyut6gAAAAAAAAC4gFJJUF66dEnvvfee6tatWxrVAQAAAAAAAHARNl/iXb16dYt7UBqGocTERPn6+uq///1vqQYHAAAAAAAAoGKzOUE5Z84ci89ubm6qVauWunbtqurVq5dWXAAAAAAAAABcgM0JyqFDh5ZFHAAAAAAAAABckM0JSklKTU3Vrl27dObMGWVnZ1uMu+uuu0olMAAAAAAAAKAiMgx7R+BYbE5Qrly5Ug899JDOnz+fZ5zJZFJWVlapBAYAAAAAAACg4rP5Kd5PPfWUHnjgAUVHRys7O9viRXISAAAAAAAAgC1sTlDGxsZq3LhxCggIKIt4AAAAAAAAALgQmxOU9913n8LDw8sgFAAAAAAAAACuxuZ7UL7//vu6//779ccff6hdu3by8PCwGP/000+XWnAAAAAAAAAAKjabE5RLlizR6tWr5e3trfDwcJlMJvM4k8lEghIAAAAAAACA1WxOUL700kuaOnWqXnjhBbm52XyFOAAAAAAAAACY2ZxhTE9P14ABA0hOAgAAAAAAACgxm7OMQ4cO1VdffVUWsQAAAAAAAABwMTZf4p2VlaWZM2dq1apVat++fZ6H5MyaNavUggMAAAAAAABQsdncg3L37t3q1KmT3NzctGfPHu3YscP82rlzp011rV+/Xnfeeafq1Kkjk8mk5cuXFzlNeHi4rr32Wnl5ealp06ZatGhRnjJz585Vo0aN5O3tra5du2rz5s02xQUAAAAAAACgfNjcg/L3338vtZknJyerQ4cOeuSRR3TPPfcUWT4yMlJ9+/bVE088oS+++EJhYWF69NFHFRQUpNDQUEnSV199pXHjxmn+/Pnq2rWr5syZo9DQUB08eFC1a9cutdgBAAAAAAAAlJxdn3TTp08fvfbaa7r77rutKj9//nwFBwfrnXfeUatWrTR69Gjdd999mj17trnMrFmzNGLECA0bNkytW7fW/Pnz5evrq4ULF5ZVMyqMn3ad1tbjF7Q/OlFnkjJ0Kj6t1OdxLjlD/1xMlSSdiEvV2aT0QsvHX8rU0XOXChwfk5ieJ07DMHTgTIqS07MKrTszy9Ce6GRlZhtWRl+w0/Fpik7Ivy3bTyZq+8lEc7wn40q+XLeduFJnjoysbO2JTlZWKbTnapHnL2n90TilZWbnGXf8QqrOJWeU+jyvlpn9v/WVZVv7cqbLyMobu3R5e9kXk6zUjPzHO5KktCwdPJNi7zB0KSNL+2KTZRilv605EmuOUSV1Mi5Nxy+k6sCZlGIvz6iLeeMsart3RsnpWdofa9tycqb9+9j5S7qQUvbHUnuKu5Spo+cL/k4vTEJqpg6fvXz8S8vM1t6YZGWX4Bh0/EKqwy3vos55ykLu5Xq1Q2dTlJiWaf6cVU7HlWzj8nzS8znnQNnJfY7uLI7EXlJ8SqbFsPTMbO05VbLjg6M5GJOixNTMPMPPJWbon/Nlt86i49J02sbfLQejU5SUWvhvsLKSlW1ozynHOfc5Vcjvw4vJGTp2Nv/jvWEYOnQutcDfshdTMqz6Lk1IzdSRQr5TMrMMHTtv5Pvb8XRcus6nlP0+lPu3zaGzKUrIZzsvrrTMbO3N51iw+2Sy/jqaoD2nkvP9bZvj6JlLikvJPx7DMHQgOkXJaZbrKCk1SwdjCv6tlm0Y2hebYjHflCJyFq7G5h6U9hQREaGQkBCLYaGhoRo7dqyky08Y37ZtmyZOnGge7+bmppCQEEVERBRYb1pamtLSrhx8ExISSjdwJ/Dr7miN/nJHnuFrnmivyp7upTafuxbskST9d3BL/eeLA5KkjU93KrD8HR/vliFp8aAWalbL12JctmHonk/3SpJ+e6K9fP8X5/pj8Zr4c6Tq+Xvp66GtC6z7nXUn9MOe87qvfU2N616/2G1Ky8zWfYv3XZ73qI6q5G4yj7uQkqHRy45Ikn56tK053pIs1wNnUvTU95fr/HRgC7WofXm5vP5blFYfvKiHOgdo5E11it2eq8Umpmvw/9bVdfWr6t27m5rHnU3K0IP/3S+p8PVYGt5bf1Lf7jqnu9pcoxd6NrB6uvkbT+vL7WfUu2V1TerVKM/4H/ae18y1J9QuqLI+vL95KUZc+gZ+vk8XUjL13t1N1aV+VbvF8cQ3h3X43CVN7tVQoS1r2C2OshR3KVMDPivbbTshNVMPfLbP/PmtOxvrpmB/m+q4mJKhgZ/njfPDjaf1RSHbvTMavvSgouLS9MYdweretJpV03y/+5zeDj+pDnUqa959jrt/n4hLteo70dnd8fFuSZfPARpf42PTtHd/uleXMrL14f3NtXBTtDZFJWrUTXU0uHOAzXHEJKaX23eXLQo75ykrOcv1o/ubq21QZfPwHaeSNOq7w6rq5a5Vj7eXJH0UEa3Pt8WqV4vqmhLaqMxi+mxrrD6KiNbNwf6aeWfjMpsPLOWco68Y3lbXVPYoorT9HYxO0bCFB+Vukv548cp+/Mr3x/XHoXiNuC1Iw24OtGOEpWP7P4ka/d8j8vdx16/j2luMu+u9y+vsh6fbqlbV0l1nmVmG7p17+Rzl9+c7yKtS0f2aNh1L0DNLjqpmFQ/9OKZtqcZjjY/WRevzjbHq1ba6pvRrVO7zzy01I1v35/w+HN0xz/i+cy6vu6VPtFKDa7wtxoUfOq/RP55QYFUPLRuWdzn2/eTytF/+p5Ua1fDOMz7HnZ/sUUa2oQUDWqhVQN7vlPc3xuqnfVnaf+GMXvh3sHn4pfQsDVkQKUla9WjZJikf+Gyf4i5lasQNQfr4r2j5erjpt5EdSqXuF7+NVMTRBD35rzr6T7fL5wq7Tybp8cWHzWW6Nq6q2YOa5pn26JlLeujj/52XvZT3PGH9oXhN/DZS9ap76esnr+QbBs7fpwvJmXrvwabq0CDvuvn277Oas/6UOgRdOQeKPJdc/EZWQHbtQWmrmJgYBQRYnogGBAQoISFBly5d0rlz55SVlZVvmZiYmALrnT59uvz9/c2v+vWLn6xyVh+uP5bv8LLqXfDHsXiryuUcEredTMozLndPugu5/rvx26GLkqSTRfQA/WHPeUnSt7vOWRVLQeIuXZl36lX/hYm6eCWG4xeu/IezJMt18z9XEuhbT1zpRbn64OV2f7E9tth15+dwrv/ubTlh2WuzuD1hiiNnPf2497xN0325/YwkaeWBi/mO//F/28HuaMf/csjZztcfjbNrHIf/99/YXw9csGscZelEKfR0LsrV/1VfezjO5joKivOLIrZ7ZxT1v7auOWR9m3KO83+fduz92xmOP6Vp56m83+lFufS/XrARx+O1Keryd9G3u84Wa/6O0BM9P4Wd85SVnOX61z+W/5zfEHn5PC0xV++Qz7ddPr/IOd8oK1/vuLxe/4y07lwRpSv3+aoj2xx5+Thw9YU1fxy6vN18tflMeYdUJnLaE3+p4F5WkQX0xCuJ3L26EguZd27hB+IkSeeS7NM7/fON/ztG7bH/uc/FXL8PC+vRuedU3u//lXsvb7sxiYUvx6LOHTL+1zNyS1T+na9+2nd52/rx7ziL4Rdz/a5Ot/HKNVvl/I7++K9oSVJKKV7xEnH0cru/3XLlXGHDYctlsemY5W/bHNv/Kfx7+Le9/8s3XLQ8D7+Q/L/faofi8p3u+92Xf8/+HV2+V0s4E6dKUJaViRMnKj4+3vw6ceKEvUMCAAAAAAAAXIJVCcprr71WFy9ezhJPmzZNKSn2+c9zYGCgYmMte4fFxsbKz89PPj4+qlmzptzd3fMtExhYcBd/Ly8v+fn5WbwAAAAAAAAAlD2rEpT79+9XcvLlLsRTp05VUlL5XXqSW7du3RQWFmYxbM2aNerWrZskydPTU507d7Yok52drbCwMHMZAAAAAAAAAI7DqofkdOzYUcOGDdPNN98swzD09ttvq0qVKvmWnTRpktUzT0pK0pEjR8yfIyMjtXPnTtWoUUMNGjTQxIkTderUKX322WeSpCeeeELvv/++nnvuOT3yyCNau3atvv76a/3888/mOsaNG6ehQ4eqS5cuuv766zVnzhwlJydr2LBhVscFAAAAAAAAoHxYlaBctGiRJk+erJ9++kkmk0m//vqrKlXKO6nJZLIpQbl161b16NHD/HncuHGSpKFDh2rRokWKjo5WVFSUeXxwcLB+/vlnPfPMM3r33XdVr149ffLJJwoNDTWXGTBggM6ePatJkyYpJiZGHTt21MqVK/M8OAcAAAAAAACA/VmVoGzRooWWLl0qSXJzc1NYWJhq165d4pl3795dhlHwk6EWLVqU7zQ7duwotN7Ro0dr9OjRJQ0PAAAAAAAAQBmzKkGZW3Z26T36HQAAAAAAAIBrszlBKUlHjx7VnDlztH//fklS69atNWbMGDVp0qRUgwMAAAAAAABQsVn1FO/cVq1apdatW2vz5s1q37692rdvr02bNqlNmzZas2ZNWcQIAAAAAAAAoIKyuQflCy+8oGeeeUZvvvlmnuHPP/+8br/99lILDgAAAAAAAEDFZnMPyv3792v48OF5hj/yyCPat29fqQQFAAAAAAAAwDXYnKCsVauWdu7cmWf4zp07S+XJ3gAAAAAAAABch82XeI8YMUKPPfaYjh07phtvvFGStGHDBs2YMUPjxo0r9QBRMRm2ls9nAlvrsLf82uDM8wFgf664u3OMc36sQsdz9TphPwOAknCcg6jjROI8DJaa3dicoHzllVdUtWpVvfPOO5o4caIkqU6dOpoyZYqefvrpUg8Q5cNksncEJWPP+E0FvC98mhIEnGtSZ19vAK5gf3ZdrHrrmXLtKCX6LgXg1Ir6znSlowPnD87LEVedxW9bRwywBCpaeyoimxOUJpNJzzzzjJ555hklJiZKkqpWrVrqgaF8Oft/yu0Zv1HA+8KnKUHAuSZ19vUG4Ar2Z9fFqreekWtHoYcD4LqK+s50paMD5w/OyxFXncVvW0cMsAQqWnsqIpsTlLmRmERx2frPi/z+2+Fs/wApr//Y8J8hwHW44u7OMc75sQodz9XrhP0MAErCcQ6ijhOJ8+AKDfux+SE5AAAAAAAAAFBaSFACKD66ybs0LpMAAAAAAJQGEpQAAAAAAAAA7MamBGVGRoZ69uypw4cPl1U8AJwJt+dwadyjDAAAAABQGmxKUHp4eGjXrl1lFQsAAAAAAAAAF2PzJd7/+c9/tGDBgrKIBQAAAAAAAICLqWTrBJmZmVq4cKF+++03de7cWZUrV7YYP2vWrFILDgAAAAAAAEDFZnOCcs+ePbr22mslSYcOHbIYZ+KGZAAAAAAAAABsYHOC8vfffy+LOAAAAAAAAAC4IJvvQZnjyJEjWrVqlS5duiRJMgyj1IICAAAAAAAA4BpsTlCeP39ePXv2VPPmzXXHHXcoOjpakjR8+HCNHz++1ANExWRrOju//LezpcTLK4fP/woA1+GKuzvHOOfHKnQ8V68T9jMAKAnHOYg6TiTOw2Cp2Y3NCcpnnnlGHh4eioqKkq+vr3n4gAEDtHLlylINDuXH2W8fas/4TQW8L3yaEgSca1JnX28ArmB/dl2seuvlvt95ib5LATi1or4zXenowPmD83LEVWfx29YRAyyBitaeisjme1CuXr1aq1atUr169SyGN2vWTP/880+pBQYAAAAAAACg4rO5B2VycrJFz8kcFy5ckJeXV6kEhfLn7Jfy2DN+o4D3hU9TgoBzTers6w3AFezProtVb73c9zznEizAdRX1nelKRwfOH5yXI646i9+2jhhgCVS09lRENicob7nlFn322WfmzyaTSdnZ2Zo5c6Z69OhRrCDmzp2rRo0aydvbW127dtXmzZsLLNu9e3eZTKY8r759+5rLPPzww3nG9+7du1ixoWzY2rs6v+7YztZDu7y6lNN1HXAdrri7c4xzfqxCx3P1OmE/A4CScJyDqONE4jy4hYz92HyJ98yZM9WzZ09t3bpV6enpeu6557R3715duHBBGzZssDmAr776SuPGjdP8+fPVtWtXzZkzR6GhoTp48KBq166dp/yyZcuUnp5u/nz+/Hl16NBB999/v0W53r1769NPPzV/pncnAAAAAAAA4Hhs7kHZtm1bHTp0SDfffLP69eun5ORk3XPPPdqxY4eaNGlicwCzZs3SiBEjNGzYMLVu3Vrz58+Xr6+vFi5cmG/5GjVqKDAw0Pxas2aNfH198yQovby8LMpVr17d5tgAAAAAAAAAlC2be1BKkr+/v1566aUSzzw9PV3btm3TxIkTzcPc3NwUEhKiiIgIq+pYsGCBBg4cqMqVK1sMDw8PV+3atVW9enX961//0muvvaZrrrkm3zrS0tKUlpZm/pyQkFCM1gAAAAAAAACwVbESlBcvXtSCBQu0f/9+SVLr1q01bNgw1ahRw6Z6zp07p6ysLAUEBFgMDwgI0IEDB4qcfvPmzdqzZ48WLFhgMbx379665557FBwcrKNHj+rFF19Unz59FBERIXd39zz1TJ8+XVOnTrUpdgAAAAAAAAAlZ/Ml3uvXr1ejRo303nvv6eLFi7p48aLee+89BQcHa/369WURY4EWLFigdu3a6frrr7cYPnDgQN11111q166d+vfvr59++klbtmxReHh4vvVMnDhR8fHx5teJEyfKIXoAAAAAAAAANvegHDVqlAYMGKB58+aZeyNmZWXpySef1KhRo7R7926r66pZs6bc3d0VGxtrMTw2NlaBgYGFTpucnKylS5dq2rRpRc6ncePGqlmzpo4cOaKePXvmGe/l5cVDdAAAAAAAAAA7sLkH5ZEjRzR+/HiLS6Xd3d01btw4HTlyxKa6PD091blzZ4WFhZmHZWdnKywsTN26dSt02m+++UZpaWn6z3/+U+R8Tp48qfPnzysoKMim+AAAAAAAAACULZsTlNdee6353pO57d+/Xx06dLA5gHHjxunjjz/W4sWLtX//fo0cOVLJyckaNmyYJGnIkCEWD9HJsWDBAvXv3z/Pg2+SkpI0YcIE/fXXXzp+/LjCwsLUr18/NW3aVKGhoTbHBwAAAAAAAKDsWHWJ965du8zvn376aY0ZM0ZHjhzRDTfcIEn666+/NHfuXL355ps2BzBgwACdPXtWkyZNUkxMjDp27KiVK1eaH5wTFRUlNzfLPOrBgwf1559/avXq1Xnqc3d3165du7R48WLFxcWpTp066tWrl1599VUu4wYAAAAAAAAcjFUJyo4dO8pkMskwDPOw5557Lk+5Bx98UAMGDLA5iNGjR2v06NH5jsvvwTYtWrSwiCU3Hx8frVq1yuYYUL7yX3uFlM9nAlvrsLcCNlmnnQ8A+3PF3Z1jnPNjFTqeq9cJ+xkAlITjHEQdJxLnYbDU7MaqBGVkZGRZxwE7M5nsHUHJ2DN+UwHvC5+mBAHnmtTu641jt0vjB2zpsvv+DLth1VvPlGtHKdF3KQCnVtR3pisdHTh/cF6OuOosfts6YoAlUNHaUxFZlaBs2LBhWccBAAAAAAAAwAVZlaC82unTp/Xnn3/qzJkzys7Othj39NNPl0pgAJwA/4VyafwXEgAAAABQGmxOUC5atEiPP/64PD09dc0111heamMykaAEAAAAAAAAYDWbE5SvvPKKJk2apIkTJ+Z5ujacl7PfS86e8RsFvC98mhIEnGtSZ19vAK5gf3ZdrHrr5X5IIjexB1xXUd+ZrnR04PzBeTniqrP4beuIAZZARWtPRWRzhjElJUUDBw4kOYkSsfXK0PwuJeXq0vxx2S3gOlxxd+cY5/xYhY7n6nXCfgYAJeE4B1HHicR58BA++7E5yzh8+HB98803ZRELAAAAAAAAABdj8yXe06dP17///W+tXLlS7dq1k4eHh8X4WbNmlVpwAAAAAAAAACq2YiUoV61apRYtWkhSnofkAAAAAAAAAIC1bE5QvvPOO1q4cKEefvjhMggHAAAAAAAAgCux+R6UXl5euummm8oiFgAAAAAAAAAuxuYE5ZgxY/R///d/ZRELAAAAAAAAABdj8yXemzdv1tq1a/XTTz+pTZs2eR6Ss2zZslILDgAAAAAAAEDFZnOCslq1arrnnnvKIha4EMPW8vlMYGsd9lZe8ea3rABUTK64u3OMc36sQsdz9TphPwOAknCcg6jjROI8DJaa3dicoPz000/LIg7YmbM/gN2e8ZsKeF/4NCUIONekzr7eAFzB/uy6WPXWM+XaUUr0XQrAqRX1nelKRwfOH5yXI646i9+2jhhgCVS09lRENt+DEgAAAAAAAABKi809KIODgy3+e321Y8eOlSggAAAAAAAAAK7D5gTl2LFjLT5nZGRox44dWrlypSZMmFBacQEAAAAAAABwATYnKMeMGZPv8Llz52rr1q0lDggAAAAAAACA6yi1e1D26dNH3333XWlVh3Lm7E9rtGf8RgHvC5+mBAHnmtTZ1xuAK9ifXRer3npGrh2Fp2wCrquo70xXOjpw/uC8HHHVWfy2dcQAS6CitaciKrUE5bfffqsaNWqUVnWo4Gx9gBZP3LIeywpwHa64u3OMc36sQsdz9TphPwOAknCcg6jjROI8TCw1u7H5Eu9OnTpZPCTHMAzFxMTo7Nmz+uCDD0o1OAAAAAAAAAAVm80Jyv79+1t8dnNzU61atdS9e3e1bNmytOICAAAAAAAA4AJsTlBOnjy5LOIAAAAAAAAA4IJK7R6UJTF37lw1atRI3t7e6tq1qzZv3lxg2UWLFslkMlm8vL29LcoYhqFJkyYpKChIPj4+CgkJ0eHDh8u6GYDr4UbDLo0bTQMAAAAASoPVCUo3Nze5u7sX+qpUyeYOmfrqq680btw4TZ48Wdu3b1eHDh0UGhqqM2fOFDiNn5+foqOjza9//vnHYvzMmTP13nvvaf78+dq0aZMqV66s0NBQpaam2hwfAAAAAAAAgLJjdUbx+++/L3BcRESE3nvvPWVnZ9scwKxZszRixAgNGzZMkjR//nz9/PPPWrhwoV544YV8pzGZTAoMDMx3nGEYmjNnjl5++WX169dPkvTZZ58pICBAy5cv18CBA22OEUABeMCZS+MprwAAAACA0mB1gjIn2ZfbwYMH9cILL2jFihUaPHiwpk2bZtPM09PTtW3bNk2cONE8zM3NTSEhIYqIiChwuqSkJDVs2FDZ2dm69tpr9cYbb6hNmzaSpMjISMXExCgkJMRc3t/fX127dlVERES+Ccq0tDSlpaWZPyckJNjUDtjO1itDuZTUeiwrwHW44u7OMc75sQodz9XrhP0MAErCcQ6ijhOJ8zBYanZTrHtQnj59WiNGjFC7du2UmZmpnTt3avHixWrYsKFN9Zw7d05ZWVkKCAiwGB4QEKCYmJh8p2nRooUWLlyoH374Qf/973+VnZ2tG2+8USdPnpQk83S21Dl9+nT5+/ubX/Xr17epHRWBs/eEsmf8pgLeFz5NCQLONamzrzcAV7A/uy5WvfVMuXaUEn2XAnBqRX1nutLRgfMH5+WIq87it60jBlgCFa09FZFNCcr4+Hg9//zzatq0qfbu3auwsDCtWLFCbdu2Lav48ujWrZuGDBmijh076rbbbtOyZctUq1Ytffjhh8Wuc+LEiYqPjze/Tpw4UYoRAxVYrn8uGXS3cDmscgAAAABAabD6Eu+ZM2dqxowZCgwM1JIlS/K95NtWNWvWlLu7u2JjYy2Gx8bGFniPyat5eHioU6dOOnLkiCSZp4uNjVVQUJBFnR07dsy3Di8vL3l5eRWjBQAAAAAAAABKwuoE5QsvvCAfHx81bdpUixcv1uLFi/Mtt2zZMqtn7unpqc6dOyssLEz9+/eXJGVnZyssLEyjR4+2qo6srCzt3r1bd9xxhyQpODhYgYGBCgsLMyckExIStGnTJo0cOdLq2ABYgW7yLo3LJAAAAAAApcHqBOWQIUMs7vtTWsaNG6ehQ4eqS5cuuv766zVnzhwlJyebn+o9ZMgQ1a1bV9OnT5ckTZs2TTfccIOaNm2quLg4vfXWW/rnn3/06KOPSrp8b6KxY8fqtddeU7NmzRQcHKxXXnlFderUMSdBAQAAAAAAADgGqxOUixYtKpMABgwYoLNnz2rSpEmKiYlRx44dtXLlSvNDbqKiouTmduVWmRcvXtSIESMUExOj6tWrq3Pnztq4caNat25tLvPcc88pOTlZjz32mOLi4nTzzTdr5cqV8vb2LpM2AAAAAAAAACgeqxOUZWn06NEFXtIdHh5u8Xn27NmaPXt2ofWZTCZNmzZN06ZNK60QKzxnf9iFPeM3Cnhf+DQlCNjiwTTFr6a0GeKKb6AkHGl/Rvli1Vsv9wPZSvRdCsCpFfWd6UpHB84fnJcjrjqL37aOGGAJVLT2VEQ2PcUbAAAAAAAAAEoTCUrYha097XgYh/VYVoDrcMXdnWOc82MVOp6r1wn7GQCUhOMcRB0nEudhYqnZDQlKAAAAAAAAAHZDghIAAAAAAACA3ZCgBFAquOkwAAAAAAAoDhKUAAAAAAAAAOyGBCXswtbOdvn1znO2HntGOQXsbMsFQPG54u7OMc75sQodz9XrhP0MAEriykHU3sdTDue2M1hqdkOCEpKc/2mN9ozfVMD7wqcpQcC5JnX29QbgCvZn18Wqt54p147CUzYB11XUd6YrHR04f3BejrjqHDGm0sK+4vhIUAIoPiPft3AR9v6PMAAAAACgYiBBCQAAAAAAAMBuSFACKD66ybs0LpMAAAAAAJQGEpQAAAAAAAAA7IYEJQAAAAAAAAC7IUEJoPiMAt7DJfCQHAAAAABAaSBBCQAAAAAAAMBuSFBCkvP3hLJn/MXpRGiUpLthrkntvt54SIpL4yE5pcvu+zPshlVvPSPXjlKi71IATq2o70xXOjpw/uC8HHHVOWJMpYV9xfGRoAQAAAAAAABgNyQoYRe2dryip5b1WFaA63DF3Z1jnPNjFTqeq9cJ+xkAlITjHEQdJxLnYWKp2Q0JSgDFl/ty8wp9QQDyw2USAAAAAIDSQIIShSqrBITFfRutmEl+RQpKiDlS0sQeD7ku7fY70OIsI87XQueL2Bk5x1J2jihLlyMd41E89l6Fjr4N2SO+q2dp33t7O/gKquBY+o7FEY5XVt9j3wFidRxGPu+snNLKCaz5DV2c+Vc0xWl/Ud9DRdVZ0Kpx9XVhDRKUsAtX/AKrkG2m97tL4xJAAAAAAEBpIEEJSQUnGsoqAVHa9eaur7yTJqYC3ucZlzvGkmT2yrmtFT8H5XwtdL6InVH5L2USvq6LVW89U64dpbjfpY6+rzl6fGWNe3/Zl7Ms/aL2E2dpR1GsOR6U9THD2upd/dhVHPktMmuXo6mMFnhFW40F/R4vrTrzHV9QbqV0Zl+hkaAEAAAAAAAAYDckKAEUX+6H5FTES9hRKNY5AAAAAKA0OESCcu7cuWrUqJG8vb3VtWtXbd68ucCyH3/8sW655RZVr15d1atXV0hISJ7yDz/8sEwmk8Wrd+/eZd0MAAAAAAAAADaye4Lyq6++0rhx4zR58mRt375dHTp0UGhoqM6cOZNv+fDwcA0aNEi///67IiIiVL9+ffXq1UunTp2yKNe7d29FR0ebX0uWLCmP5gCuhRtpuDTuNQQAAAAAKA12T1DOmjVLI0aM0LBhw9S6dWvNnz9fvr6+WrhwYb7lv/jiCz355JPq2LGjWrZsqU8++UTZ2dkKCwuzKOfl5aXAwEDzq3r16uXRHAAAAAAAAAA2sGuCMj09Xdu2bVNISIh5mJubm0JCQhQREWFVHSkpKcrIyFCNGjUshoeHh6t27dpq0aKFRo4cqfPnzxdYR1pamhISEixeAAAAAAAAAMqeXROU586dU1ZWlgICAiyGBwQEKCYmxqo6nn/+edWpU8ciydm7d2999tlnCgsL04wZM7Ru3Tr16dNHWVlZ+dYxffp0+fv7m1/169cvfqMAF8XzUgAAAAAAQHFUsncAJfHmm29q6dKlCg8Pl7e3t3n4wIEDze/btWun9u3bq0mTJgoPD1fPnj3z1DNx4kSNGzfO/DkhIYEkJQAAAAAAAFAO7NqDsmbNmnJ3d1dsbKzF8NjYWAUGBhY67dtvv60333xTq1evVvv27Qst27hxY9WsWVNHjhzJd7yXl5f8/PwsXq7GcPLub/aM3yjgfeHTlCDgXJM6+3oDcAX7s+ti1VvPyLWjlOi7FIBTK+o705WODpw/OC9HXHUWv20dMcASqGjtqYjsmqD09PRU586dLR5wk/PAm27duhU43cyZM/Xqq69q5cqV6tKlS5HzOXnypM6fP6+goKBSiRsAAAAAAABA6bD7U7zHjRunjz/+WIsXL9b+/fs1cuRIJScna9iwYZKkIUOGaOLEiebyM2bM0CuvvKKFCxeqUaNGiomJUUxMjJKSkiRJSUlJmjBhgv766y8dP35cYWFh6tevn5o2barQ0FC7tBF5mWwtb+sELqxclxX/hXJp/BfS/lzx0Mj3gfNjFTqeq9cJ+xkAlITjHEQdJxLnYWKp2Y3d70E5YMAAnT17VpMmTVJMTIw6duyolStXmh+cExUVJTe3K3nUefPmKT09Xffdd59FPZMnT9aUKVPk7u6uXbt2afHixYqLi1OdOnXUq1cvvfrqq/Ly8irXtlUEZZWAuPqy6KIOAfnFUVBsjpQ0sUcX+dKejwMtzjLifC10voidUa7LSA1DJgf9te6K24IjHeNRPPZehY6+Ddkjvqtnad9b5zj4CqrgWPqOxRGOV1bfwsoBYnUchuVbG04jrV2OhpUFXX21FKf9RX0PFVVngXmKYsTiauyeoJSk0aNHa/To0fmOCw8Pt/h8/PjxQuvy8fHRqlWrSikylBVX/AKrkE12zJwNyomD5uwAAAAAAE7G7pd4wzEUlGgoqwREadebu77yTpoUNjtTge9LEGQ5t7Xi56Ccr4XOF7EzKv+lTMLXdbHqrZe7N3Nxv0sdfV9z9PjKGpfW2ZezLP2i9hNnaUdRrDkelPUxw9rqXf3YVRz5LTJrl2NZXd1T0VajxW/wUmpcUdUUmFspndlXaCQoAQAAAAAAANgNCUoAxZf79ioV8hp2FIZ1DgAAAAAoDSQoAQAAAAAAANgNCUoAxceNNFwa9xoCAAAAAJQGEpQAAAAAAAAA7IYEJQAAAAAAAAC7IUEJoPhyPyRHPDHF1fCQHAAAAABAaSBBCQAAAAAAAMBuSFACKD4ekuLSeEgOAAAAAKA0kKAEAAAAAAAAYDckKCHJ+e8lZ8/4DYv31gVSovs15r7vo5OvNwBXsD+7Lla99YxcOwr3PgZcV1Hfma50dOD8wXk54qorzm9bZ8G+4vhIUKJQZbUTG6WQZCtoMkc68BgFvHcmhcZdIZKlzhe4o0TsvOvcGkY+7xybUbFXCFBqHH1XcfT4ylpF+0HsbFj6jsURjgfWhuAIsToiWxeLtcuR8z7rlMVSKqrOglYNa6xoJCiB8sIRCQAAAAAAIA8SlJBU8MMuyuohGKVdb+76yvvBHVbPLneMJXm6TDm3tdBZVIiHpDhfIxwl4or9kJzyb1zFXp4oDKveeqZcO0pxv0sdfV9z9PjKWonOkVBizrL0i9pPnKUdRbHmeFDWxwxrq3f1Y1dx5LfIrF2OpjJa4BVtNeZuT2ktsqKqKTC3Ujqzr9BIUAIAAAAAAACwGxKUAAAAAAAAAOyGBCWA4jPyfQsXwb25AQAAAAClgQQlAAAAAAAAALshQQmg+LjTr0vjZugAAAAAgNJAghIAAAAAAACA3ZCgBFB8RgHv4RK4ByUAAAAAoDSQoAQAAAAAAABgNyQoARQf9yB0adyDEgAAAABQGhwiQTl37lw1atRI3t7e6tq1qzZv3lxo+W+++UYtW7aUt7e32rVrp19++cVivGEYmjRpkoKCguTj46OQkBAdPny4LJsAAAAAAAAAoBjsnqD86quvNG7cOE2ePFnbt29Xhw4dFBoaqjNnzuRbfuPGjRo0aJCGDx+uHTt2qH///urfv7/27NljLjNz5ky99957mj9/vjZt2qTKlSsrNDRUqamp5dUsAAAAAAAAAFaoZO8AZs2apREjRmjYsGGSpPnz5+vnn3/WwoUL9cILL+Qp/+6776p3796aMGGCJOnVV1/VmjVr9P7772v+/PkyDENz5szRyy+/rH79+kmSPvvsMwUEBGj58uUaOHBg+TXOQe08EaeY+EsWw3ZExeVbduPxBAVUKf3E7p7oZPP7dUfj5FbEtaI7TycpyM/TYlhaZrb5/cbjCapV2UOStD82xTw8/EicVfFYWy4/cZcyze//PBYvHw938+eDZ6/Esu1Eovn9xuPxql3Fsj3W2nX6yrLbeSpZdfziLMYbKll7rrbzdJLF59x1HzhzpX1/RMbLu1L5/M+juO3Lb7oj5y4VOt4R7YlJcYhYj51PdYg4ysLR85bbRVHHqOKIumh5bN1XjPV6ONf2+3sBcVa0dXTgjPXLyVn2720nrxxnHTnO0rLzVJKu8fUo1rS7cn0nxSSmF2t5bT955fvYEZf3zlNJCqxavHOE4tp1OsliWeyJuXKukd8yKsvlFpd65bzKEddPRbflRKIS07LsHYaFtIw0xSRl63R6orw80iVJf0flOm4eiMszTfylrHyHO5s9J3PtiwW0Z3NkopLTsvMdV1wp6Ve2gQ1H4uXvU3TaYN+pXL/B7Lzsr55/VnamLqWnSsmSj1eW3N3LNg1yPiXD/P6PY/HydMu+PP9zko/HlWW77Z8k+Xi6m2PMyMrUnlPWfUdtP5moql7uBY7Pset0cpHH0tzL63zSldgj/kmSn4/1x4P89tW0jDTFxGTrdNKVYYXG8r9Ys7IyLZaZu1vx1tmZxAxz+3bn2p/M88tnW90ZVfh+tz+68G19z6kUrT8Yn2eb++diWr4xrtwTrVpVvdS5YY3CG+MCTIZhv+ewpqeny9fXV99++6369+9vHj506FDFxcXphx9+yDNNgwYNNG7cOI0dO9Y8bPLkyVq+fLn+/vtvHTt2TE2aNNGOHTvUsWNHc5nbbrtNHTt21LvvvpunzrS0NKWlXdlYEhISVL9+fcXHx8vPz69U2upInl6yQz/+fdreYQAAAAAAALi0Hi1q6dNh19s7jDKRkJAgf39/q/Jrdu1Bee7cOWVlZSkgIMBieEBAgA4cOJDvNDExMfmWj4mJMY/PGVZQmatNnz5dU6dOLVYbnFFwzcrq0rC6xbCMbEN/n4jLU7Z9UOVSnfeu//WcbB9U2eJ9UeXbBlaWWz4dmPKrIzUzW4fOXiqy7qi4NMVdylQN30qq5+9lW0OsiCO/cda0uShZhqG9MZf/a5N7uUReSFViWpZqV/Eo9Z4XOXF7uJnUKsA333Glva1c7WR8mi6kZKqaTyU1qGb9+opOSNfZ5AxV9XJXcA3vPOMTUrN0/GKqTJLalXEbSipnWbcK8JVHfjtEOTlwJkXpWYbd4yhr5bFt78rVm7xlbR95utveCzm/OIva7p1RTjub1fSRj4d1yyk+NVP/XEyTm+ny8dJRGZJ2l9Ox1J5y1mG7oMo2P2MtZ9o2Ab46fO6S0rMM1fP3Ug1f209lHXV5F3XOU5bzbBPgK/dcM83MNrTvf1ek5CyjmMR0nUkq++PKueQMnU5Il3clNzWv5VNm84Gl8jqfK44sI1upGZfk7eUjd7fLx/9sQ9pz6n8x17sS8+HYS7qUka061TxVs0rxemo7ksxsQ/tO/29frGe5bnadzNv+0mRr/elZhg5E5x9reYiJT9eZxAxV9XZXcE3LY5QhQ1lZWVKW5O7mLlM5POkx9z5lGIaysrOkSpfnv/vk5eXUrt6V70NDhrKNbBnZlbQvOsk8bUH1FvVdaj6+B/rKPZ/2RsWlKu5Slqr5uqvBVcf0nHXfJuDKPmeN/PbVrOxspaZekrdH3rpyYmxRy0cHr/r9fvUyM9l45nAgJkXpmYbqVvfUNf+70jIr29De01d6P3q6m9QyyDfPtAUdX3KkZmTrUOylPONzllurIF9VcleebS7uUqai4tLkbpK8PdyV/L+eyl0aVlezgKo2ta+isvsl3o5g4sSJGjdunPlzTg/KiuqZ25vrmdubFzg+IyNDkZGR8vLykoeH83+xAwAAAHBOKWkpOnr+qJo0bCBf77zJBKAoGVkZSrqUJMVJVXyrlPtv3IyM/82/mlTFu4o83PPOPyMrQ2mZaapXpZ5ORp0s89/iV/arJnn2q5TUFB09dlRNatm2z+W3rxa3LmuWmSMraJvLyMhQWlqagoODybXkw64PyalZs6bc3d0VGxtrMTw2NlaBgYH5ThMYGFho+Zy/ttTp5eUlPz8/ixcAAAAAAACAsmfXBKWnp6c6d+6ssLAw87Ds7GyFhYWpW7du+U7TrVs3i/KStGbNGnP54OBgBQYGWpRJSEjQpk2bCqwTAAAAAAAAgH3Y/RLvcePGaejQoerSpYuuv/56zZkzR8nJyeaneg8ZMkR169bV9OnTJUljxozRbbfdpnfeeUd9+/bV0qVLtXXrVn300UeSJJPJpLFjx+q1115Ts2bNFBwcrFdeeUV16tSxeBAPAAAAAAAAAPuze4JywIABOnv2rCZNmqSYmBh17NhRK1euND/kJioqSm65bqZ644036ssvv9TLL7+sF198Uc2aNdPy5cvVtm1bc5nnnntOycnJeuyxxxQXF6ebb75ZK1eulLd3xXhQAAAAAAAAAFBR2D1BKUmjR4/W6NGj8x0XHh6eZ9j999+v+++/v8D6TCaTpk2bpmnTppVWiAAAAAAAAADKgF3vQQkAAAAAAADAtZGgBAAAAAAAAGA3JCgBAAAAAAAA2A0JSgAAAAAAAAB2Q4ISAAAAAAAAgN2QoAQAAAAAAABgN5XsHYAjMgxDkpSQkGDnSOwjIyNDSUlJSklJUaVKbCIAAAAA7CM1I1XJScmKT4hX6qVUe4cDJ5SZnam09DQpScpIyyj337iZmZlKy0yT3KWM1AxVcss7/8zsTGUb2UrITiiX3+KF7Vep6alKTk5WvGe8UlOs3+fyq7O4dVmzzBxZQdtcZmamsrOzlZCQIA8PDztHWT5y8mo5ebbCONdaLieJiYmSpPr169s5EgAAAAAAAMB5JSYmyt/fv9AyJsOaNKaLyc7O1unTp1W1alWZTCZ7h1NqEhISVL9+fZ04cUJ+fn72DgcoF2z3cDVs83BFbPdwNWzzcEVs93A1FWGbNwxDiYmJqlOnjtzcCr/LJD0o8+Hm5qZ69erZO4wy4+fn57QbN1BcbPdwNWzzcEVs93A1bPNwRWz3cDXOvs0X1XMyBw/JAQAAAAAAAGA3JCgBAAAAAAAA2A0JShfi5eWlyZMny8vLy96hAOWG7R6uhm0erojtHq6GbR6uiO0ersbVtnkekgMAAAAAAADAbuhBCQAAAAAAAMBuSFACAAAAAAAAsBsSlAAAAAAAAADshgQlAAAAAAAAALshQelC5s6dq0aNGsnb21tdu3bV5s2b7R0SUKQpU6bIZDJZvFq2bGken5qaqlGjRumaa65RlSpVdO+99yo2NtaijqioKPXt21e+vr6qXbu2JkyYoMzMTIsy4eHhuvbaa+Xl5aWmTZtq0aJF5dE8QJK0fv163XnnnapTp45MJpOWL19uMd4wDE2aNElBQUHy8fFRSEiIDh8+bFHmwoULGjx4sPz8/FStWjUNHz5cSUlJFmV27dqlW265Rd7e3qpfv75mzpyZJ5ZvvvlGLVu2lLe3t9q1a6dffvml1NsLFLXNP/zww3mO/b1797YowzYPZzJ9+nRdd911qlq1qmrXrq3+/fvr4MGDFmXK85yG3wUoD9Zs9927d89zvH/iiScsyrDdw1nMmzdP7du3l5+fn/z8/NStWzf9+uuv5vEc54tgwCUsXbrU8PT0NBYuXGjs3bvXGDFihFGtWjUjNjbW3qEBhZo8ebLRpk0bIzo62vw6e/asefwTTzxh1K9f3wgLCzO2bt1q3HDDDcaNN95oHp+ZmWm0bdvWCAkJMXbs2GH88ssvRs2aNY2JEyeayxw7dszw9fU1xo0bZ+zbt8/4v//7P8Pd3d1YuXJlubYVruuXX34xXnrpJWPZsmWGJOP777+3GP/mm28a/v7+xvLly42///7buOuuu4zg4GDj0qVL5jK9e/c2OnToYPz111/GH3/8YTRt2tQYNGiQeXx8fLwREBBgDB482NizZ4+xZMkSw8fHx/jwww/NZTZs2GC4u7sbM2fONPbt22e8/PLLhoeHh7F79+4yXwZwLUVt80OHDjV69+5tcey/cOGCRRm2eTiT0NBQ49NPPzX27Nlj7Ny507jjjjuMBg0aGElJSeYy5XVOw+8ClBdrtvvbbrvNGDFihMXxPj4+3jye7R7O5McffzR+/vln49ChQ8bBgweNF1980fDw8DD27NljGAbH+aKQoHQR119/vTFq1Cjz56ysLKNOnTrG9OnT7RgVULTJkycbHTp0yHdcXFyc4eHhYXzzzTfmYfv37zckGREREYZhXP4R7ObmZsTExJjLzJs3z/Dz8zPS0tIMwzCM5557zmjTpo1F3QMGDDBCQ0NLuTVA0a5O1mRnZxuBgYHGW2+9ZR4WFxdneHl5GUuWLDEMwzD27dtnSDK2bNliLvPrr78aJpPJOHXqlGEYhvHBBx8Y1atXN2/3hmEYzz//vNGiRQvz5wceeMDo27evRTxdu3Y1Hn/88VJtI5BbQQnKfv36FTgN2zyc3ZkzZwxJxrp16wzDKN9zGn4XwF6u3u4N43KCcsyYMQVOw3YPZ1e9enXjk08+4ThvBS7xdgHp6enatm2bQkJCzMPc3NwUEhKiiIgIO0YGWOfw4cOqU6eOGjdurMGDBysqKkqStG3bNmVkZFhs2y1btlSDBg3M23ZERITatWungIAAc5nQ0FAlJCRo79695jK568gpw/4BRxAZGamYmBiLbdTf319du3a12M6rVaumLl26mMuEhITIzc1NmzZtMpe59dZb5enpaS4TGhqqgwcP6uLFi+Yy7AtwFOHh4apdu7ZatGihkSNH6vz58+ZxbPNwdvHx8ZKkGjVqSCq/cxp+F8Cert7uc3zxxReqWbOm2rZtq4kTJyolJcU8ju0eziorK0tLly5VcnKyunXrxnHeCpXsHQDK3rlz55SVlWWxkUtSQECADhw4YKeoAOt07dpVixYtUosWLRQdHa2pU6fqlltu0Z49exQTEyNPT09Vq1bNYpqAgADFxMRIkmJiYvLd9nPGFVYmISFBly5dko+PTxm1Dihaznaa3zaaexuuXbu2xfhKlSqpRo0aFmWCg4Pz1JEzrnr16gXuCzl1AOWld+/euueeexQcHKyjR4/qxRdfVJ8+fRQRESF3d3e2eTi17OxsjR07VjfddJPatm0rSeV2TnPx4kV+F8Au8tvuJenBBx9Uw4YNVadOHe3atUvPP/+8Dh48qGXLlkliu4fz2b17t7p166bU1FRVqVJF33//vVq3bq2dO3dynC8CCUoADq1Pnz7m9+3bt1fXrl3VsGFDff311yQOAaCCGjhwoPl9u3bt1L59ezVp0kTh4eHq2bOnHSMDSm7UqFHas2eP/vzzT3uHApSbgrb7xx57zPy+Xbt2CgoKUs+ePXX06FE1adKkvMMESqxFixbauXOn4uPj9e2332ro0KFat26dvcNyClzi7QJq1qwpd3f3PE+Hio2NVWBgoJ2iAoqnWrVqat68uY4cOaLAwEClp6crLi7OokzubTswMDDfbT9nXGFl/Pz8SILC7nK208KO4YGBgTpz5ozF+MzMTF24cKFU9gW+K2BvjRs3Vs2aNXXkyBFJbPNwXqNHj9ZPP/2k33//XfXq1TMPL69zGn4XwB4K2u7z07VrV0myON6z3cOZeHp6qmnTpurcubOmT5+uDh066N133+U4bwUSlC7A09NTnTt3VlhYmHlYdna2wsLC1K1bNztGBtguKSlJR48eVVBQkDp37iwPDw+LbfvgwYOKiooyb9vdunXT7t27LX7IrlmzRn5+fmrdurW5TO46csqwf8ARBAcHKzAw0GIbTUhI0KZNmyy287i4OG3bts1cZu3atcrOzjaf6Hfr1k3r169XRkaGucyaNWvUokULVa9e3VyGfQGO6OTJkzp//ryCgoIksc3D+RiGodGjR+v777/X2rVr89x+oLzOafhdgPJU1Hafn507d0qSxfGe7R7OLDs7W2lpaRznrWHvp/SgfCxdutTw8vIyFi1aZOzbt8947LHHjGrVqlk8HQpwROPHjzfCw8ONyMhIY8OGDUZISIhRs2ZN48yZM4ZhGMYTTzxhNGjQwFi7dq2xdetWo1u3bka3bt3M02dmZhpt27Y1evXqZezcudNYuXKlUatWLWPixInmMseOHTN8fX2NCRMmGPv37zfmzp1ruLu7GytXriz39sI1JSYmGjt27DB27NhhSDJmzZpl7Nixw/jnn38MwzCMN99806hWrZrxww8/GLt27TL69etnBAcHG5cuXTLX0bt3b6NTp07Gpk2bjD///NNo1qyZMWjQIPP4uLg4IyAgwHjooYeMPXv2GEuXLjV8fX2NDz/80Fxmw4YNRqVKlYy3337b2L9/vzF58mTDw8PD2L17d/ktDLiEwrb5xMRE49lnnzUiIiKMyMhI47fffjOuvfZao1mzZkZqaqq5DrZ5OJORI0ca/v7+Rnh4uBEdHW1+paSkmMuU1zkNvwtQXora7o8cOWJMmzbN2Lp1qxEZGWn88MMPRuPGjY1bb73VXAfbPZzJCy+8YKxbt86IjIw0du3aZbzwwguGyWQyVq9ebRgGx/mikKB0If/3f/9nNGjQwPD09DSuv/5646+//rJ3SECRBgwYYAQFBRmenp5G3bp1jQEDBhhHjhwxj7906ZLx5JNPGtWrVzd8fX2Nu+++24iOjrao4/jx40afPn0MHx8fo2bNmsb48eONjIwMizK///670bFjR8PT09No3Lix8emnn5ZH8wDDMC5vf5LyvIYOHWoYhmFkZ2cbr7zyihEQEGB4eXkZPXv2NA4ePGhRx/nz541BgwYZVapUMfz8/Ixhw4YZiYmJFmX+/vtv4+abbza8vLyMunXrGm+++WaeWL7++mujefPmhqenp9GmTRvj559/LrN2w3UVts2npKQYvXr1MmrVqmV4eHgYDRs2NEaMGJHnpJptHs4kv+1dksX5Rnme0/C7AOWhqO0+KirKuPXWW40aNWoYXl5eRtOmTY0JEyYY8fHxFvWw3cNZPPLII0bDhg0NT09Po1atWkbPnj3NyUnD4DhfFJNhGEb59dcEAAAAAAAAgCu4ByUAAAAAAAAAuyFBCQAAAAAAAMBuSFACAAAAAAAAsBsSlAAAAAAAAADshgQlAAAAAAAAALshQQkAAAAAAADAbkhQAgAAAAAAALAbEpQAAAAAAAAA7IYEJQAAACRJ4eHhMplMiouLK7Rco0aNNGfOnHKJCQAAABUfCUoAAAAn8vDDD8tkMslkMsnT01NNmzbVtGnTlJmZWeK6b7zxRkVHR8vf31+StGjRIlWrVi1PuS1btuixxx4r8fwAAAAASapk7wAAAABgm969e+vTTz9VWlqafvnlF40aNUoeHh6aOHFiier19PRUYGBgkeVq1apVovkAAAAAudGDEgAAwMl4eXkpMDBQDRs21MiRIxUSEqIff/xRknTx4kUNGTJE1atXl6+vr/r06aPDhw+bp/3nn3905513qnr16qpcubLatGmjX375RZLlJd7h4eEaNmyY4uPjzT02p0yZIinvJd5RUVHq16+fqlSpIj8/Pz3wwAOKjY01j58yZYo6duyozz//XI0aNZK/v78GDhyoxMTEQtv53XffqU2bNvLy8lKjRo30zjvvWIxv1KiR3njjDT3yyCOqWrWqGjRooI8++qjQOhMTEzV48GBVrlxZQUFBmj17trp3766xY8eay6SlpenZZ59V3bp1VblyZXXt2lXh4eHm8Tk9S1etWqVWrVqpSpUq6t27t6Kjo81lsrOzNW3aNNWrV09eXl7q2LGjVq5caR5//PhxmUwmff3117rlllvk4+Oj6667TocOHdKWLVvUpUsXValSRX369NHZs2ct2vDJJ5+oVatW8vb2VsuWLfXBBx8U2mYAAABHR4ISAADAyfn4+Cg9PV3S5UvAt27dqh9//FEREREyDEN33HGHMjIyJEmjRo1SWlqa1q9fr927d2vGjBmqUqVKnjpvvPFGzZkzR35+foqOjlZ0dLSeffbZPOWys7PVr18/XbhwQevWrdOaNWt07NgxDRgwwKLc0aNHtXz5cv3000/66aeftG7dOr355psFtmnbtm164IEHNHDgQO3evVtTpkzRK6+8okWLFlmUe+edd9SlSxft2LFDTz75pEaOHKmDBw8WWO+4ceO0YcMG/fjjj1qzZo3++OMPbd++3aLM6NGjFRERoaVLl2rXrl26//771bt3b4tEb0pKit5++219/vnnWr9+vaKioiyWz7vvvqt33nlHb7/9tnbt2qXQ0FDdddddFnVI0uTJk/Xyyy9r+/btqlSpkh588EE999xzevfdd/XHH3/oyJEjmjRpkrn8F198oUmTJun111/X/v379cYbb+iVV17R4sWLC2wzAACAwzMAAADgNIYOHWr069fPMAzDyM7ONtasWWN4eXkZzz77rHHo0CFDkrFhwwZz+XPnzhk+Pj7G119/bRiGYbRr186YMmVKvnX//vvvhiTj4sWLhmEYxqeffmr4+/vnKdewYUNj9uzZhmEYxurVqw13d3cjKirKPH7v3r2GJGPz5s2GYRjG5MmTDV9fXyMhIcFcZsKECUbXrl0LbOeDDz5o3H777RbDJkyYYLRu3doijv/85z/mz9nZ2Ubt2rWNefPm5VtnQkKC4eHhYXzzzTfmYXFxcYavr68xZswYwzAM459//jHc3d2NU6dOWUzbs2dPY+LEiYZhXF4ukowjR46Yx8+dO9cICAgwf65Tp47x+uuvW9Rx3XXXGU8++aRhGIYRGRlpSDI++eQT8/glS5YYkoywsDDzsOnTpxstWrQwf27SpInx5ZdfWtT76quvGt26dcu3zQAAAM6Ae1ACAAA4mZ9++klVqlRRRkaGsrOz9eCDD2rKlCkKCwtTpUqV1LVrV3PZa665Ri1atND+/fslSU8//bRGjhyp1atXKyQkRPfee6/at29f7Fj279+v+vXrq379+uZhrVu3VrVq1bR//35dd911ki5fjl21alVzmaCgIJ05c6bQevv162cx7KabbtKcOXOUlZUld3d3SbKI3WQyKTAwsMB6jx07poyMDF1//fXmYf7+/mrRooX58+7du5WVlaXmzZtbTJuWlqZrrrnG/NnX11dNmjTJtz0JCQk6ffq0brrppjzx//333xbDcscfEBAgSWrXrp3FsJx6k5OTdfToUQ0fPlwjRowwl8nMzDQ/2AgAAMAZkaAEAABwMj169NC8efPk6empOnXqqFIl60/pHn30UYWGhurnn3/W6tWrNX36dL3zzjt66qmnyjBiycPDw+KzyWRSdna2w9WblJQkd3d3bdu2zZwEzZH7Uvj85msYhs3zy12PyWTKd1hOe5KSkiRJH3/8sUUSWlKeWAEAAJwJ96AEAABwMpUrV1bTpk3VoEEDi+Rkq1atlJmZqU2bNpmHnT9/XgcPHlTr1q3Nw+rXr68nnnhCy5Yt0/jx4/Xxxx/nOx9PT09lZWUVGkurVq104sQJnThxwjxs3759iouLs5inrVq1aqUNGzZYDNuwYYOaN29e7GRc48aN5eHhoS1btpiHxcfH69ChQ+bPnTp1UlZWls6cOaOmTZtavKx5wrkk+fn5qU6dOvnGX5JlEhAQoDp16ujYsWN5YgsODi52vQAAAPZGD0oAAIAKolmzZurXr59GjBihDz/8UFWrVtULL7ygunXrmi+XHjt2rPr06aPmzZvr4sWL+v3339WqVat862vUqJGSkpIUFhamDh06yNfXV76+vhZlQkJC1K5dOw0ePFhz5sxRZmamnnzySd12223q0qVLsdsyfvx4XXfddXr11Vc1YMAARfx/e3fo0nobxQH8aBCLXBS1CAbFycCJOhCmoGVh4ILNIExBgyAsbKw6XBRnMgqzCGrTIBaT4QYFjfo3GMRgMIhvs1xeuFzh/fFeP5/88DznV7+c8zs/f8b+/v6XNlZ3dXXFyspK1Gq16Onpif7+/qjX69He3v7ZvZhKpWJ5eTlKpVI0m82YnJyMp6enuLq6ivHx8VhYWPitt2q1WtTr9RgeHo6JiYlotVpxf38fR0dHf1x/RMT29naUy+X48eNHFAqFeHt7i9vb23h+fo5KpfKluwEAkqKDEgDgL9JqtSKbzUaxWIxcLhcfHx9xcXHxOTb8/v4em5ubkU6no1AoRCqV+tfQb2ZmJjY2NmJpaSn6+vpiZ2fnlzNtbW1xdnYW3d3dMTc3F/l8PoaGhuLk5ORL3zE1NRWnp6dxfHwcY2NjsbW1FY1GI1ZXV790797eXuRyuSgWi5HP52N2djbS6XR0dnZ+nmm1WlEqlaJarcbo6GgsLi7Gzc1NDA4O/vY75XI5KpVKVKvVyGQycXl5Gefn5zEyMvKl+tfX1+Pg4CBarVZkMpmYn5+Pw8NDHZQAwP9a28ef/CwHAAD+Aq+vrzEwMBDNZjPW1taSLgcA4Fsy4g0AwLdxd3cXDw8PMT09HS8vL9FoNCIiftkYDgDAf0dACQDAt7K7uxuPj4/R0dER2Ww2rq+vo7e3N+myAAC+LSPeAAAAAEBiLMkBAAAAABIjoAQAAAAAEiOgBAAAAAASI6AEAAAAABIjoAQAAAAAEiOgBAAAAAASI6AEAAAAABIjoAQAAAAAEvMP8qPhkr8frfIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -706,12 +690,12 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAAGzCAYAAAAsf/kbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHCUlEQVR4nOzdd3xT9f7H8XfSzWjLbAuUspeUrYiI4A+UpeC4ioiCilwHKMpQEBniwAXuiwMZ16siKKKAIshUQWSI7D3KKrsT6Mr5/QENTWfSJk3avJ48+qA555tvPuf0JPnmk+8wGYZhCAAAAAAAAADcwOzuAAAAAAAAAAB4LxKUAAAAAAAAANyGBCUAAAAAAAAAtyFBCQAAAAAAAMBtSFACAAAAAAAAcBsSlAAAAAAAAADchgQlAAAAAAAAALchQQkAAAAAAADAbUhQAgAAAAAAAHAbEpQAAAAAAAAA3IYEJQAAAAAAAAC3IUEJAACczjAMGYbh7jAAAAAAlAAkKAEAgNN8/vnnatq0qQIDAxUYGKimTZtq2rRp7g4LAAAAgAfzdXcAAACgdBg3bpymTJmip556Su3atZMkrV27Vs8++6xiYmI0ceJEN0cIAAAAwBOZDMZfAQAAJ6hSpYref/999e3b12b7119/raeeekpnzpxxU2QAAAAAPBlDvAEAgFOkpaWpTZs2Oba3bt1a6enpbogIAAAAQElAghIAADjFgw8+qKlTp+bY/umnn6pfv35uiAgAAABAScAclAAAoNCGDRtm/d1kMmnatGlasmSJrr/+eknSunXrFBMTo/79+7srRAAAAAAejjkoAQBAod188812lTOZTFq+fLmLowEAAABQEpGgBAAAAAAAAOA2DPEGAAAAAABAkZw6dUq7d++WJDVs2FBVq1Z1c0TuEx8fr9jYWElSeHi4QkJC3ByR5yNBCQAAnGbDhg2aM2eOYmJilJqaarNv3rx5booKAADAMUePHtWPP/6Ya5tmypQpborKPQo6F4mJiXryySc1e/ZsZWRkSJJ8fHzUp08fffTRR16VnJs2bZqmTJliTdRmatiwoYYPH66BAwe6KTLPR4ISAAA4xezZs9W/f3917dpVS5Ys0a233qo9e/bo5MmTuvPOO90dHgAAgF2WLVumXr16qU6dOtq1a5eaNm2qQ4cOyTAMtWrVyt3hFSt7zsWjjz6qv//+WwsXLlS7du0kSWvXrtXQoUP12GOPafbs2e48hGLz1ltvacKECXr66afVtWtXhYWFSZJOnjypJUuWaOjQoTp//rxGjBjh5kg9E3NQAgAAp2jWrJkee+wxDR48WOXLl9c///yj2rVr67HHHlNERIReeukld4cIAABQoOuuu07du3fXSy+9ZG3TVK1aVf369VO3bt30xBNPuDvEYmPPuShbtqx++eUX3XjjjTb3/e2339StWzclJye7KfriFRUVpbfeekv33ntvrvu/+eYbjRw5UjExMcUcWclgdncAAACgdNi/f7969uwpSfL391dycrJMJpOeffZZffrpp26ODgAAwD47d+5U//79JUm+vr66ePGiypUrp4kTJ+qNN95wc3TFy55zUalSpVyHcYeEhKhChQrFGq87nTp1StHR0Xnuj46O1pkzZ4oxopKFBCUAAHCKChUqKDExUZJUvXp1bdu2TZIUFxenCxcuuDM0AAAAu5UtW9Y612JERIT2799v3edtCSZ7zsWLL76oYcOGWReFkaTY2FiNHDlSY8eOLd6A3ejaa6/V66+/rvT09Bz7MjIy9MYbb+jaa691Q2QlA3NQAgAAp7jpppu0dOlSRUdH65577tHQoUO1fPlyLV26VJ07d3Z3eAAAAHa5/vrr9fvvv6tx48bq0aOHhg8frq1bt2revHm6/vrr3R1escrrXLz66qvy9fW1zkO5d+9e1axZUzVr1pQkxcTEKCAgQKdPn9Zjjz3mzkMoNh9++KG6du2q8PBw3XTTTTZzUK5evVr+/v5asmSJm6P0XMxBCQAAnOLcuXO6dOmSqlWrJovFojfffFNr1qxR/fr19eKLL3rVEB8AAFByHThwQElJSWrWrJmSk5M1fPhwa5tmypQpioqKcneIxSavc5Genq6uXbsqNDS0wDrGjx/v+kA9RGJiov73v//pzz//tPYoDQ8PV7t27XT//fcrODjYzRF6LhKUAAAAAAAAANyGOSgBAIBLpaens1ohAAAosU6ePFkq2zLp6elaunSpPv/8c/3666/KyMiw7rNnrk1H5uPMyMjQgQMHZLFYJEkpKSmaM2eOZs+erZMnTzoefAmUlpZWKq8jZyFBCQAAXGr79u2qXbu2u8MAAADIV2Jioh544AFFRUVpwIABSk1N1eDBgxUREaHatWurY8eOSkhIcHeYhfbUU09p4cKFkqSjR48qOjpa3bt315gxY9StWze1bNlSx44dkySFhYWpc+fO+uqrr5SSkpJrfWFhYfq///u/fMtI0pYtWxQZGan69eurefPmOnLkiNq0aaNHHnlEgwYNUuPGjbV+/XrnH7CH2bFjB23ifJCgBAAAAAAAXu+FF17Qxo0bNWLECMXExOjee+/V6tWr9dtvv2nFihU6c+aM3njjDXeHWWhz585VrVq1JEnDhw9XjRo1FBsbq9jYWJ06dUpRUVF65plnJEmGYcjf318PP/ywIiIi9NRTT2nz5s029RmGoYCAgHzLSNJzzz2n9u3b659//lHnzp3VtWtXNW7cWOfPn9f58+fVs2dPvfDCC649eHg85qAEAABFkrl6Y14uXryoPXv22AwbAgAA8DQ1a9bUrFmzdPPNN+v48eOqUaOGfvzxR912222SpEWLFmn48OHatWuXmyMtnKCgIGsvvsjISH333Xe67rrrrPu3bdumm2++WadPn5bZbFZsbKzMZrNmzZql6dOna9euXWrRooUeffRR9evXT6GhoQWWCQ4OVsWKFfXHH3+ocePGunjxosqXL681a9ZYH3v79u3q2LGjQ0PGPRFt4qLxdXcAAACgZNuxY4fuu+++PIesnDhxQnv27CnmqAAAABxz6tQp1atXT5JUrVo1BQUFqUGDBtb9TZs21ZEjR9wVXpE1aNBAf/31l2rXrq3y5cvnGK6emJhonSMyU+XKlTV8+HANHz5ca9eu1bRp0/T8889rxIgRyuzvll+Zu+++W4ZhyNf3cvop+/+S5OPjk+NxSyLaxEVDD0oAAFAkbdq00cCBA/XEE0/kun/z5s1q3bo13xYDAACPVr16dS1YsMDaE+7+++/Xu+++q6pVq0q63NOvQ4cOOnfunDvDLLSZM2dq7Nix+uKLL3TkyBFNmjRJH3zwgRo3bqzdu3dr6NChatu2rT777DP5+PjoxIkT1mPPKjk5WbNnz9ajjz6qkydP5ltm+vTpCgoKUq1atfTSSy/p888/1xdffKEOHTpo+vTpkqTBgwdr69atWr16tcvPgSvRJi4aelACAIAiad++vXbv3p3n/vLly+umm24qxogAAAAc16xZM61fv96aoPzqq69s9q9fv16NGzd2R2hO8dBDD+ncuXPq2bOnDMNQRkaGbr31Vuv+Xr166Z133pEk5deXrWzZsho4cKAGDRpUYJmBAwdq/fr16t69u2bMmKFKlSppxYoVGjhwoCIiImQ2m3X+/HktWLDAeQfqJrSJi4YelAAAAAAAwOudO3dOZrNZoaGhue7/+eefFRQUpE6dOhVrXM4WFxenpUuX6sCBA7JYLIqIiFD79u1Vv359a5lZs2bpvvvuU0BAQJ712FMmU3Jysnbt2qWGDRuqXLlyunTpkr788ktdvHhRt9xyixo2bOiUY0PJRYISAAAAAAAAgNuY3R0AAAAo2fr376/ExETr7X/++UdpaWlujAgAAMBxpb1N48jx2VPW3vpK+3nN5C3H6Sr0oAQAAEWSfRL14OBgbd68WXXq1HFzZAAAAPYr7W0aR47PnrL21lfaz2smbzlOV6EHJQAAKJLs33Xy3ScAACiJSnubxpHjs6esvfWV9vOayVuO01VIUAIAAAAAAABwG193BwAAAEq+HTt2KDY2VtLlb4t37dqlpKQkmzLNmjVzR2gAAAB2K+1tGkeOz56y9pRx9HFLMm85TldgDkoAAFAkZrNZJpMp12EsmdtNJpMyMjLcEB0AAIB9SnubxpHjs6esYRgym80F1pf1/4IetyQr7dePq9GDEgAAFMnBgwfdHQIAAECRlfY2jSPHZ0/Zo0ePqkaNGkUJqVQp7dePq9GDEgAAAAAAAIDbsEgOAABwqXnz5jHXDgAAKPFKe5vGkeOzp6y99ZX285rJW46zsEhQAgCAIvvkk0/0r3/9S/fff7/WrVsnSVq+fLlatmypBx98UO3bt3dzhAAAAAUr7W0aR47PnrL21lfaz2smbzlOlzAAAACKYNKkSYafn5/RunVro2zZskaZMmWMV1991QgPDzcmTZpknDt3zt0hAgAAFKi0t2kcOT57ytpbX2k/r5m85ThdhUVyAABAkcyYMUOfffaZBgwYoN9++00dO3bUmjVrtG/fPpUtW9bd4QEAANiltLdpHDk+e8raW19pP6+ZvOU4XYVFcgAAQJEEBQVpz549ioyMlCQFBARozZo1at26tZsjAwAAsF9pb9M4cnz2lLW3vtJ+XjN5y3G6CnNQAgCAIklJSVFgYKD1tr+/vypWrOjGiAAAABxX2ts0jhyfPWXtra+0n9dM3nKcrsIQbwAAUGRjx45VmTJlJEmpqal65ZVXFBISYlNmypQp7ggNAADAbqW9TePI8RVU1jAMu+pz9HFLMm85TldgiDcAACiSTp06yWQy5VvGZDJp+fLlxRQRAACA40p7m8aR47On7ObNm9WiRYsC67NYLKX6vGYq7dePq5GgBAAATnXmzBlJUuXKld0cCQAAQOGV9jaNI8dnT1l76yvt5zWTtxynszAHJQAAKLK4uDgNHjxYlStXVlhYmMLCwlS5cmUNGTJEcXFx7g4PAADALp7cpnnkkUfs+smPI8dnT1l76/Pk8+pM3nKcrkAPSgAAUCTnzp1Tu3btdOzYMfXr10+NGzeWJO3YsUNfffWVIiMjtWbNGlWoUMHNkQIAAOTN09s0ZrNZUVFRatmypfJL5Xz//fe5bnfk+Owpu2jRInXv3r3A+gzD8Ojz6iyefv14OhKUAACgSJ555hktW7ZMv/76q8LCwmz2xcbG6tZbb1Xnzp31zjvvuClCAABKh7Vr1+rs2bO67bbbrNv++9//avz48UpOTtYdd9yhDz74QAEBAW6MsuTy9DbN4MGD9fXXXysqKkoPP/ywHnjgAYdWiXbk+Owp6+Pjo/T09ALrMwzDrefVbDbbNTdkenp6kR7H068fT0eCEgAAFEmtWrX0ySefqGvXrrnuX7x4sR5//HEdOnSoeAMDAKCU6d69uzp16qTnn39ekrR161a1atVKDz30kBo3bqy33npLjz32mCZMmODeQEsoV7RpevTooa+//tq6kvPrr7+uxx9/XKGhoZKks2fPqkOHDtqxY4dd9aWkpGjevHmaPn261qxZo549e2rgwIG69dZbC0zCOXJ89pS97bbbtGjRogLrk+TWtuIPP/yQ5761a9fq/fffl8Vi0aVLl4r0OLSJi4YEJQAAKJKAgADt379fNWrUyHX/0aNHVa9evSI3+gAA8HYRERFasGCB2rRpI0kaM2aMVq1apd9//12SNHfuXI0fP97uZBdsuaJN4+PjoxMnTqhq1aqSpODgYG3evFl16tSRJJ08eVLVqlVTRkaGw/EePnxYM2fO1H//+1+lp6dr+/btKleuXJ7lHTk+e8pGRkbqyJEjBdZnGIbHtRV3796tUaNGacGCBerXr58mTpyoqKioItVJm7hoWCQHAAAUSeXKlfP9JvjgwYMODT8CAAC5O3/+vM3Q0VWrVql79+7W29dee62OHDnijtBKBVe0abL3CXNmH7HMocuGYdiV4HTk+Owpazab7arPk9qKx48f16BBgxQdHa309HRt3rxZs2bNKnJyUqJNXFQkKAEAQJF07dpVY8aMUWpqao59KSkpGjt2rLp16+aGyAAAKF3CwsJ08OBBSVJqaqo2bdqk66+/3ro/MTFRfn5+7gqvxCsJbZqUlBR9/fXXuuWWW9SgQQNt3bpVH374oWJiYvLtPSk5dnz2lK1bt65d9XnCeY2Pj9fzzz+vevXqafv27Vq2bJkWLFigpk2bOu0xPOE4SzKGeAMAgCI5evSo2rRpo4CAAA0ePFiNGjWSYRjauXOn/vOf/yglJUUbNmxQZGSku0MFAKBEe+KJJ/TPP//ojTfe0Pz58zVr1iwdP35c/v7+kqQvv/xS7777rtavX+/mSEsmV7RpfHx8FBsbqypVqkiSypcvry1btqh27dqSHBvi/eSTT2r27NmKjIzUI488on79+qly5couOT57yi5YsEC9evUqsD6TyeTWtuKbb76pN954Q+Hh4XrttdfUu3dvlzwObeKiIUEJAACK7ODBg3ryySe1ZMkS69Alk8mkW265RR9++KHq1avn5ggBACj5zpw5o7vuuku///67ypUrp1mzZunOO++07u/cubOuv/56vfrqq26MsmRzdpvGbDare/fu1pXVFyxYoP/7v/9T2bJlJV3uWbd48WK7EpRms1k1a9ZUy5Yt810QZ968eXnuc+T47Clrb33ubCuazWYFBQWpS5cu8vHxybNcfufNXrSJC48EJQAAcJrz589r7969kqR69eoxzw4AAC4QHx+vcuXK5Ui2nDt3TuXKlbP2qEThOatN8/DDD9tVbsaMGQWWeeihhwpcqdveuhw5PnvK2lufO9qKzjxv9qJN7DgSlAAAAAAAAADchkVyAAAAAAAAALgNCUoAAAAAAAAAbkOCEgAAuERKSoomTJiglJQUd4cCAECpxfuta7ni/DqzTmfUZW8dzizn7uu2OB/f3cdaUjAHJQAAcImEhASFhIQoPj5ewcHB7g4HAIBSifdb13LF+XVmnc6oy946nFnO3ddtcT6+u4+1pKAHJQAAAAAAAAC3IUEJAAAAAAAAwG183R2AJ8rIyNCePXtUrlw5mUwmd4cDAECJlJiYKEk6duyYEhIS3BwNAAClE++3ruWK8+vMOp1Rl711OLOcu6/b4nx8dx+rOxmGoaSkJDVo0EA+Pj75lmUOylzs3LlTTZo0cXcYAAAAAAAAQIm2Y8cONW7cON8y9KDMRUREhKTLJ7B8+fJujqb4paenKyYmRmazWb6+XCIAAAAA3ONS2iUdTTiqyOqRCvALcHc4KIHSLelKTUuV4iV/P/9i/4ybnp6u1PRUKUTy9/WXrznn46db0mUxLIooG6ETx064/LN4fs+rS6mXdPToUUWGOvacy63OwtZlzznzZHldc+np6bJYLKpZs6bX5FoSExPVpEkTa54tP95xRhxkNl+emrN69epeucJSWlqaUlNTFRAQID8/P3eHAwAAAMBLXUi5oJSzKapevbrKBJZxdzgogdIy0pR0MUkKksqVKVfsn3HT0q48fqhULrCc/HxyPn5aRppS0lNUvVx1GRmGyz+L5/e8unDpglJSU1S9imPPudzqLGxd9pwzT5bXNZeWlqaUlMvnyFtyLZlD2jPzbPlhkRwAAAAAAAAAbkOCEgAAAAAAAIDbkKAEAKAYJCUlady4cbruuutUt25d9erVS5s3b5Z0ebjHq6++qs6dO6tevXpq1aqVnn76acXGxuZaV0pKim655RZVr15d27Zts9m3Y8cO3XnnnapTp47atGmj//znP0WKLdMzzzyj6tWr2/z069fPpsz58+c1ZMgQNWzYUI0bN9bw4cOVnJxsU+bHH3/ULbfcorp16+q6667T1KlTC4wPAAAAQOlGghIAgGIwYsQI/fbbb3r//ff166+/qmPHjrrvvvt04sQJXbx4UVu3btXQoUO1ePFiffbZZzpw4IAefvjhXOt69dVXFR4enmN7YmKi7r//ftWoUUM///yzxo4dq8mTJ+t///tfoWPL6uabb9bff/9t/fnoo49s9j/11FPavXu3vv76a82aNUt//vmnnnvuOev+5cuX66mnntKDDz6o5cuX67XXXtNnn32mGTNm2HsaAQAAAJRCJCgBAHCxixcv6qefftKYMWN0/fXXq3bt2ho+fLhq1aql//73vwoODtbs2bPVq1cv1atXT61bt9Yrr7yiLVu26NixYzZ1LV++XKtWrdLYsWNzPM68efOUlpamyZMnq2HDhurdu7cGDhyoTz/9tNCxZeXv76+qVataf0JDQ6379u7dqxUrVujtt99Wq1atdN111+mVV17RDz/8YO0J+t1336lr167q37+/oqKi1KVLFw0ZMkQfffSRDMMowhkGAAAAUJKRoAQAwMUyMjKUkZGhgIAAm+2BgYFav359rvdJSEiQyWRScHCwddvp06c1cuRIvf/++woKCspxn40bN6pt27by9/e3buvYsaP279+vuLi4Ise2du1aNWvWTB06dNCoUaN07tw5m8cOCQlR8+bNrds6dOggs9msv//+W5KUmpqa6+OcOHFCR48ezTU+AAAAAKUfCUoAAFysXLlyat26td577z3FxsYqIyND3333nTZu3KiTJ0/mKH/p0iW99tpruuOOO1S+fHlJkmEYevbZZ/Xggw/aJAGzOn36tCpXrmyzrUqVKtZ9RYnt5ptv1nvvvadvvvlGY8aM0Z9//qkHH3xQGRkZkqRTp06pUqVKNnX7+voqNDRUp06dknQ5Wfrzzz/rt99+k8Vi0f79+/XJJ59IUq7nAQAAAIB3IEEJAEAxeP/992UYhlq3bq3atWtr+vTpuuOOO2Q2274Vp6Wl6fHHH5dhGJo0aZJ1+/Tp05WUlKSnnnqq0DGsW7dO9evXt/7MmzfP7th69+6tW2+9VY0bN1a3bt00a9Ysbd68WWvWrLH78fv166eHH35YDz30kGrVqqVevXqpd+/ekpTjPAAAAADwHr7uDgAAAG9Qq1Ytfffdd7pw4YISExMVFhamxx9/XDVr1rSWyUxOHj16VHPmzLH2npSkP/74Qxs3blTt2rVt6u3Ro4fuvPNOvffee6pSpYrOnDljsz+z52SVKlVUo0YNLVmyxLovs3elPbFlFxUVpYoVK+rQoUPq0KGDqlatqrNnz9qUSU9PV1xcnKpWrSpJMplMGjNmjEaNGmXtcfn7779b6wMAAADgnUhQAgDgIinpFm04kqi0DEMVy/gqOqKsypQpozJlyuj8+fNavmKl7ntsmFbui1Ogj0WfvjxChw4d0ty5c1WxYkWbul5++WWbFbFPnjyp+++/X1OnTlXLli0lSa1bt9abb76ptLQ0+fn5SZJWr16tunXrWhe0yZ7gzCoztri4OK1atUpjxozJs+zx48d1/vx5hYWFWR87Pj5eW7ZsUbNmzSRdTqpaLBZrfJl8fHwUEREhSZo/f75at26dY3g4AAAAAO9BghIAABf56I/j+vafyz0YLx7YqH+3i1DPdtE6dOiQxox/SWnlq2mpqaWWLtir0/MnKTDukL756gtlZGRY520MDQ2Vv7+/qlevblN32bJlJV3ueVitWjVJ0p133ql33nlHw4cP1+DBg7Vr1y59/vnnmjBhQr5xrly5UoZhqG7dujp06JBefvll1a1bV3369JEkJScna8qUKerRo4eqVq2qQ4cO6dVXX1WtWrXUsWNHSVL9+vV18803a+TIkXr99deVnp6uMWPGqHfv3goPD5cknTt3TgsXLtQNN9ygS5cuac6cOVq0aJG+/fZb55xwAAAAACUSCUoAAFzkdFKq9XdLygV9/NZEvXn2lEJDQ9Xshs5Kq3WHygb6y5R0SjH71umipFtvvdWmjrlz5+qGG26w6/GCg4P11VdfacyYMerevbsqVKigZ599Vg888EC+90tISNDrr7+uEydOKDQ0VD169NDzzz9v7YVpNpu1c+dOzZ07VwkJCQoLC1PHjh01cuRIm1W5P/jgA7344ovq06ePzGazevTooZdffjnH8bz88svWOS/nzp2bo4clAAAAAO9CghIAgGJQtnEHjRp8v3o1vbzK9rI95zV28SE1qlpGNRs2VPLzC/Vo23A90jbCrvoiIyN17NixHNubNGmi77//3qHYevXqpV69euW5PygoSF999VWB9VSoUEEfffRRnvsrVqyoBQsWOBQbAAAAgNKPJTMBACgmllx+N5ncEQkAAAAAeA4SlAAAFBPDyPr75RtmMpQAAAAAvJxbE5SrV6/W7bffrmrVqslkMmn+/Pk2+00mU64/b731Vp51TpgwIUf5Ro0aufhIAAAomJElQ2kx8ikIAAAAAF7ErQnK5ORkNW/ePM/5qk6cOGHzM336dJlMJt1999351nvNNdfY3O/33393RfgAADgk9x6UbgoGAAAAADyEWxfJ6d69u7p3757n/vDwcJvbP/zwg26++WbVqVMn33p9fX1z3BcAAHezmYPySrKSId4AAAAAvF2JmYPy5MmTWrRokQYOHFhg2b1796patWqqU6eO+vXrp5iYmHzLp6SkKCEhweYHAABns2TpQpn5K/lJAAAAAN6uxCQoZ82apfLly+uuu+7Kt1zbtm01c+ZMLV68WFOnTtXBgwfVoUMHJSYm5nmfSZMmKSQkxPoTGRnp7PABALAd4n3lf4Z4AwAAAPB2JSZBOX36dPXr10+BgYH5luvevbvuueceNWvWTF27dtVPP/2kuLg4zZkzJ8/7jB49WvHx8dafI0eOODt8AIAXMrIthGOxWSTn8u+mLF0oWTcHAAAAgDdy6xyU9vrtt9+0e/duffPNNw7fNzQ0VA0aNNC+ffvyLBMQEKCAgICihAgAQIFsF8m5/D89KAEAAAB4uxLRg/Lzzz9X69at1bx5c4fvm5SUpP379ysiIsIFkQEAYL+sPSStPShl24sSAAAAALyNWxOUSUlJ2rx5szZv3ixJOnjwoDZv3myzqE1CQoLmzp2rRx99NNc6OnfurA8//NB6e8SIEVq1apUOHTqkNWvW6M4775SPj4/69u3r0mMBAKAguS+SQ3ISAAAAgHdz6xDvDRs26Oabb7beHjZsmCRpwIABmjlzpiRp9uzZMgwjzwTj/v37debMGevto0ePqm/fvjp79qyqVKmiG2+8UX/++aeqVKniugMBAMAOWYd4W678zxBvAAAAAN7OrQnKTp06yci+gkA2//73v/Xvf/87z/2HDh2yuT179mxnhAYAgNPN33ZGaw8lSJLOJKdJkuhACQAAAMDblYhFcgAAKMmqlvPTqaQ0nUy8/GO7z18X0yx53BMAAAAASj8SlAAAuFi/1mGKDA3QpWyJSH9fk1rXKK/3fzvmpsgAAAAAwP1IUAIA4GJ+ZpOujwp2dxgAAAAA4JHcuoo3AAClWf6zLOdS3tE7AAAAAEApQIISAAAAAAAAgNuQoAQAAAAAAADgNiQoAQBwNZO7AwAAAAAAz0WCEgAAAAAAAIDbkKAEAAAAAAAA4DYkKAEAAAAAAAC4DQlKAAAAAAAAAG5DghIAAAAAAACA25CgBAAAAAAAAOA2JCgBAHARw3B3BAAAAADg+UhQAgAAAAAAAHAbEpQAALiYqYj7AQAAAKA0I0EJAAAAAAAAwG1IUAIAAAAAAABwGxKUAAAAAAAAANyGBCUAAAAAAAAAtyFBCQAAAAAAAMBtSFACAAAAAAAAcBsSlAAAAAAAAADchgQlAAAuY7iwNAAAAACUDiQoAQAAAAAAALgNCUoAAFzMVND+ggoAAAAAQClGghIAAAAAAACA25CgBAAAAAAAAOA2bk1Qrl69WrfffruqVasmk8mk+fPn2+x/6KGHZDKZbH66detWYL0fffSRatWqpcDAQLVt21Z//fWXi44AAAAAAAAAQFG4NUGZnJys5s2b66OPPsqzTLdu3XTixAnrz9dff51vnd98842GDRum8ePHa9OmTWrevLm6du2qU6dOOTt8AAAAAAAAAEXk684H7969u7p3755vmYCAAIWHh9td55QpUzRo0CA9/PDDkqSPP/5YixYt0vTp0zVq1Khc75OSkqKUlBTr7YSEBLsfDwAAAAAAAEDhefwclCtXrlTVqlXVsGFDPfHEEzp79myeZVNTU7Vx40Z16dLFus1sNqtLly5au3ZtnvebNGmSQkJCrD+RkZFOPQYAAAAAAAAAufPoBGW3bt303//+V8uWLdMbb7yhVatWqXv37srIyMi1/JkzZ5SRkaGwsDCb7WFhYYqNjc3zcUaPHq34+Hjrz5EjR5x6HAAA72QYjpZ38A4AAAAAUAq4dYh3Qe677z7r79HR0WrWrJnq1q2rlStXqnPnzk57nICAAAUEBDitPgAAAAAAAAD28egelNnVqVNHlStX1r59+3LdX7lyZfn4+OjkyZM220+ePOnQPJYAADiTyWTKf38xxQEAAAAAnqhEJSiPHj2qs2fPKiIiItf9/v7+at26tZYtW2bdZrFYtGzZMrVr1664wgQAAAAAAABgJ7cmKJOSkrR582Zt3rxZknTw4EFt3rxZMTExSkpK0siRI/Xnn3/q0KFDWrZsmXr37q169eqpa9eu1jo6d+6sDz/80Hp72LBh+uyzzzRr1izt3LlTTzzxhJKTk62regMAAAAAAADwHG6dg3LDhg26+eabrbeHDRsmSRowYICmTp2qLVu2aNasWYqLi1O1atV066236uWXX7aZL3L//v06c+aM9XafPn10+vRpjRs3TrGxsWrRooUWL16cY+EcAAAAAAAAAO7n1gRlp06d8l2x9JdffimwjkOHDuXYNmTIEA0ZMqQooQEAAAAAAAAoBg4P8d60aZO2bt1qvf3DDz/ojjvu0AsvvKDU1FSnBgcAAAAAAACgdHM4QfnYY49pz549kqQDBw7ovvvuU5kyZTR37lw999xzTg8QAAAAAAAAQOnlcIJyz549atGihSRp7ty5uummm/TVV19p5syZ+u6775wdHwAAAAAAAIBSzOEEpWEYslgskqRff/1VPXr0kCRFRkbaLFYDAIC3y3uWZeeUBwAAAIDSwOEEZZs2bfTKK6/oiy++0KpVq9SzZ09J0sGDB1kpGwAAAAAAAIBDHE5Qvvvuu9q0aZOGDBmiMWPGqF69epKkb7/9VjfccIPTAwQAoKQzFVigwBIAAAAAUGr5OnqHZs2a2azinemtt96Sj4+PU4ICAAAAAAAA4B0c7kEpSXFxcZo2bZpGjx6tc+fOSZJ27NihU6dOOTU4AAAAAAAAAKWbwz0ot2zZos6dOys0NFSHDh3SoEGDVLFiRc2bN08xMTH673//64o4AQAAAAAAAJRCDvegHDZsmB5++GHt3btXgYGB1u09evTQ6tWrnRocAAAAAAAAgNLN4QTl+vXr9dhjj+XYXr16dcXGxjolKAAAAAAAAADeweEEZUBAgBISEnJs37Nnj6pUqeKUoAAAAAAAAAB4B4cTlL169dLEiROVlpYmSTKZTIqJidHzzz+vu+++2+kBAgAAAAAAACi9HE5QTp48WUlJSapataouXryojh07ql69eipfvrxeffVVV8QIAECJZDha3tE7AAAAAEAp4PAq3iEhIVq6dKl+//13bdmyRUlJSWrVqpW6dOniivgAAAAAAAAAlGIOJygz3XjjjbrxxhudGQsAAKWTqUi7AQAAAKBUsytB+f7779td4dNPP13oYAAAAAAAAAB4F7sSlO+8845dlZlMJhKUAAAAAAAAAOxmV4Ly4MGDro4DAAAAAAAAgBdyeBXvrAzDkMGSowAAAAAAAAAKqVAJys8//1xNmzZVYGCgAgMD1bRpU02bNs3ZsQEAAAAAAAAo5RxexXvcuHGaMmWKnnrqKbVr106StHbtWj377LOKiYnRxIkTnR4kAAAAAAAAgNLJ4QTl1KlT9dlnn6lv377Wbb169VKzZs301FNPkaAEACATs6AAAAAAQIEcHuKdlpamNm3a5NjeunVrpaenOyUoAAAAAAAAAN7B4QTlgw8+qKlTp+bY/umnn6pfv35OCQoAgNLEVND+ggoAAAAAQCnm8BBv6fIiOUuWLNH1118vSVq3bp1iYmLUv39/DRs2zFpuypQpzokSAAAAAAAAQKnkcIJy27ZtatWqlSRp//79kqTKlSurcuXK2rZtm7Wcie4gAAAAAAAAAArgcIJyxYoVrogDAAAAAAAAgBdyeA5KZ1q9erVuv/12VatWTSaTSfPnz7fuS0tL0/PPP6/o6GiVLVtW1apVU//+/XX8+PF865wwYYJMJpPNT6NGjVx8JAAAAAAAAAAKw+EelJcuXdIHH3ygFStW6NSpU7JYLDb7N23aZHddycnJat68uR555BHdddddNvsuXLigTZs2aezYsWrevLnOnz+voUOHqlevXtqwYUO+9V5zzTX69ddfrbd9fQs11SYAAAAAAAAAF3M4czdw4EAtWbJE//rXv3TdddcVaa7J7t27q3v37rnuCwkJ0dKlS222ffjhh7ruuusUExOjmjVr5lmvr6+vwsPD7Y4jJSVFKSkp1tsJCQl23xcAAAAAAABA4TmcoFy4cKF++ukntW/f3hXx5Cs+Pl4mk0mhoaH5ltu7d6+qVaumwMBAtWvXTpMmTco3oTlp0iS99NJLTo4WAAAAAAAAQEEcnoOyevXqKl++vCtiydelS5f0/PPPq2/fvgoODs6zXNu2bTVz5kwtXrxYU6dO1cGDB9WhQwclJibmeZ/Ro0crPj7e+nPkyBFXHAIAwMsYMhwr71hxAAAAACgVHO5BOXnyZD3//PP6+OOPFRUV5YqYckhLS9O9994rwzA0derUfMtmHTLerFkztW3bVlFRUZozZ44GDhyY630CAgIUEBDg1JgBAAAAAAAAFMzhBGWbNm106dIl1alTR2XKlJGfn5/N/nPnzjktOOlqcvLw4cNavnx5vr0ncxMaGqoGDRpo3759To0LAAB7FTRdc+FncwYAAACAks/hBGXfvn117NgxvfbaawoLCyvSIjkFyUxO7t27VytWrFClSpUcriMpKUn79+/Xgw8+6IIIAQAAAAAAABSFwwnKNWvWaO3atWrevHmRHzwpKcmmZ+PBgwe1efNmVaxYUREREfrXv/6lTZs2aeHChcrIyFBsbKwkqWLFivL395ckde7cWXfeeaeGDBkiSRoxYoRuv/12RUVF6fjx4xo/frx8fHzUt2/fIscLAAAAAAAAwLkcTlA2atRIFy9edMqDb9iwQTfffLP19rBhwyRJAwYM0IQJE/Tjjz9Kklq0aGFzvxUrVqhTp06SpP379+vMmTPWfUePHlXfvn119uxZValSRTfeeKP+/PNPValSxSkxAwAAAAAAAHAehxOUr7/+uoYPH65XX31V0dHROeagdGSOyE6dOsnIZ8nS/PZlOnTokM3t2bNn2/34AAAAAAAAANzL4QRlt27dJF0eWp2VYRgymUzKyMhwTmQAAAAAAAAASj2HE5QrVqxwRRwAAAAAAAAAvJDDCcqOHTu6Ig4AAEodO2YqsS0vB+8AAAAAAKWAwwnKTBcuXFBMTIxSU1Nttjdr1qzIQQEAAAAAAADwDg4nKE+fPq2HH35YP//8c677mYMSAABbJncHAAAAAAAezOzoHZ555hnFxcVp3bp1CgoK0uLFizVr1izVr19fP/74oytiBAAAAAAAAFBKOdyDcvny5frhhx/Upk0bmc1mRUVF6ZZbblFwcLAmTZqknj17uiJOAAAAAAAAAKWQwz0ok5OTVbVqVUlShQoVdPr0aUlSdHS0Nm3a5NzoAAAAAAAAAJRqDicoGzZsqN27d0uSmjdvrk8++UTHjh3Txx9/rIiICKcHCAAAAAAAAKD0cniI99ChQ3XixAlJ0vjx49WtWzd9+eWX8vf318yZM50dHwAAAAAAAIBSzOEE5QMPPGD9vXXr1jp8+LB27dqlmjVrqnLlyk4NDgAAAAAAAEDp5vAQ7+wCAgJkNpvl4+PjjHgAAAAAAAAAeBGHE5TPPPOMPv/8c0lSRkaGbrrpJrVq1UqRkZFauXKls+MDAKDEMlxcHgAAAABKA4cTlN9++62aN28uSVqwYIEOHTqkXbt26dlnn9WYMWOcHiAAAAAAAACA0svhBOWZM2cUHh4uSfrpp590zz33qEGDBnrkkUe0detWpwcIAEDJZ8p/b/67AQAAAKBUczhBGRYWph07digjI0OLFy/WLbfcIkm6cOEC81ACAAAAAAAAcIjDq3g//PDDuvfeexURESGTyaQuXbpIktatW6dGjRo5PUAAAAAAAAAApZfDCcoJEyaoadOmOnLkiO655x4FBARIknx8fDRq1CinBwgAAAAAAACg9HI4QSlJ//rXv3JsGzBgQJGDAQAAAAAAAOBdHJ6DEgAAAAAAAACchQQlAAAAAAAAALchQQkAAAAAAADAbUhQAiiRPvzwQ1WvXl3jxo2zbvvXv/6l6tWr2/w8//zzNvf77bff1KtXLzVo0EAtWrTQq6++qvT0dJsyO3bs0J133qk6deqoTZs2+s9//lPk2DJt2LBB99xzj+rVq6eGDRvqrrvu0sWLF23K/Prrr7rttttUt25dNWnSRI888ojN/uzHWL16df3www8OxYjiYRiO3sElYQAAAACAR7NrkZyEhAS7KwwODi50MABgj82bN+t///ufGjdunGNfv379NGLECOvtoKAg6+/bt29X//799fTTT+u9995TbGysRo0apYyMDGsyMTExUffff786dOig119/Xbt27dKwYcMUHBysBx54oEixbdiwQQ888ICGDBmiV155RT4+PtqxY4fM5qvfFS1atEjPPfecnn/+ebVv314ZGRnatWtXjrqmTJmim2++2Xqb114AAAAAQEllV4IyNDRUJpPJrgozMjKKFBAA5Cc5OVlDhgzRm2++qffffz/H/sDAQFWtWjXX+/74449q3Lixnn32WUlS7dq1NWbMGD3xxBMaNmyYypUrp3nz5iktLU2TJ0+Wv7+/GjZsqO3bt+vTTz8tMEFZUGwTJkzQI488oiFDhli31atXz/p7enq6xo0bpxdffFF9+/a1bm/QoEGOukJCQvI8Tniegt5CTbLvPRYAAAAASiO7hnivWLFCy5cv1/LlyzV9+nRVrVpVzz33nL7//nt9//33eu655xQWFqbp06e7Ol4AXu6FF15Q586dddNNN+W6//vvv1fTpk31f//3f5o0aZLN8OnU1FQFBATYlA8MDNSlS5e0ZcsWSdLGjRvVtm1b+fv7W8t07NhR+/fvV1xcXKFjO3PmjP7++29VrlxZvXr1UvPmzXX33Xfrr7/+spbZunWrYmNjZTabdeutt6ply5Z64IEHcu1BOWbMGDVt2lQ9e/bU7NmzZTg8lhgAAAAAAM9gVw/Kjh07Wn+fOHGipkyZYtO7p1evXoqOjtann36qAQMGOD9KAJD0ww8/aNu2bVq0aFGu+++44w7VqFFDYWFh2rlzp1599VXt379f06ZNkyR16tRJ06ZN0/z583X77bfr1KlTevfddyVJp06dkiSdPn1akZGRNvVWqVLFui80NLRQsR0+fFiSNHnyZI0bN07XXHON5s6dqz59+mjZsmWqU6eOYmJirGXGjx+vyMhIffLJJ/rXv/6l3377TRUqVJAkjRgxQjfeeKOCgoK0atUqvfDCC0pOTtbAgQPtPJMAAAAAAHgOuxKUWa1du1Yff/xxju1t2rTRo48+6pSgACC7Y8eOady4cfr6668VGBiYa5msQ7AbN26sqlWrqk+fPjp06JBq1aqljh076sUXX9SoUaP09NNPy9/fX88884zWrVtn9zQW69ats3mcN954Q23bti0wNovFYo2xT58+kqSmTZvqjz/+0DfffKPRo0dbyzz99NPq2bOnpMtzTbZp00YLFy7Ugw8+KEnWIeqZdVy4cEFTp04lQQkAAAAAKJEcXsU7MjJSn332WY7t06ZNy9HrqCCrV6/W7bffrmrVqslkMmn+/Pk2+w3D0Lhx4xQREaGgoCB16dJFe/fuLbDejz76SLVq1VJgYKDatm1rM4QSQMm0detWnTlzRt26dVPNmjVVs2ZNrV27VtOnT1fNmjVznf+2VatWkqRDhw5Ztz322GPauXOn/vrrL23dulVdu3aVJEVFRUm63FvyzJkzNvWcPn3auq9Zs2ZasmSJ9efWW2+1K7awsDBJOeeTrFevno4dOyZJ1jkls5YJCAhQVFSUtUxuWrZsqRMnTiglJaXgEwkAAAAAgIdxuAflO++8o7vvvls///yz2rZtK0n666+/tHfvXn333XcO1ZWcnKzmzZvrkUce0V133ZVjf+ZCE7NmzVLt2rU1duxYde3aVTt27Mizl9I333yjYcOG6eOPP1bbtm317rvvqmvXrtq9ezcLSgAl2I033qhly5bZbBs2bJjq1q2rwYMHy8fHJ8d9tm/fLkk5nvsmk0nh4eGSpPnz56tatWqKjo6WJLVu3Vpvvvmm0tLS5OfnJ+nylyl169a1Du+uXbu2w7FFRkYqPDxc+/fvtyl34MAB62rczZo1U0BAgPbv36/rrrtOkpSWlqYjR46oRo0aeZ6b7du3KzQ0NMf8mgAAAAAAlAQOJyh79OihPXv2aOrUqdaFG26//XY9/vjjDveg7N69u7p3757rPsMw9O677+rFF19U7969JUn//e9/FRYWpvnz5+u+++7L9X5TpkzRoEGD9PDDD0uSPv74Yy1atEjTp0/XqFGjcr1PSkqKTc+jhIQEh44DgOt8vu6EFu04J+nySsi9rqmkAddeTi6WKVNGFSpUUKNGjXTo0CF9//336ty5sypUqKCdO3dqwoQJuv7669WkSRNrfVOnTlWnTp1kNpv1008/6aOPPtLHH39sTXDeeeedeueddzR8+HANHjxYu3bt0ueff64JEybkGWO5cuXUqFEjm21ZY7scu0mPP/64Jk+erCZNmljnoNy/f78+/fRTSVL58uX1wAMP6O2331a1atVUvXp165Qat912myRpyZIlOnPmjFq1aqWAgACtXr1aH3zwgR5//HEnnG0AAAAAAIqfwwlK6fIw79dee83Zsdg4ePCgYmNj1aVLF+u2kJAQtW3bVmvXrs01QZmamqqNGzdq9OjR1m1ms1ldunTR2rVr83ysSZMm6aWXXnLuAQBwiu/+OaO4S+nW2/O2nLEmKLPy8/PT77//rmnTpunixYuKiIhQjx49NHToUJtyy5cv1/vvv6/U1FQ1btxY06dP1//93/9Z9wcHB+urr77SmDFj1L17d1WoUEHPPvuszbyThTVo0CClpKRowoQJiouLU5MmTfT111+rVq1a1jJjx46Vr6+vnn76aV26dEktW7bUnDlzrL03/fz8NHPmTE2YMEGGYahWrVoaP368+vXrV+T44H6sxQ4AAADAGxUqQfnbb7/pk08+0YEDBzR37lxVr15dX3zxhWrXrq0bb7zRKYHFxsZKknXetkxhYWHWfdmdOXPGZq63rPfJ7O2Zm9GjR2vYsGHW2wkJCQ73BgXgGsaVlM2g6yP02Z8nbBI43377rfX36tWr2zXNxNy5cwss06RJE33//fcOx5pV1tiyGjJkiIYMGZLn/fz8/DRu3DiNGzcu1/0333yzdUg4AAAAAAClgcOL5Hz33Xfq2rWrgoKCtGnTJuvQ6Pj4eJf3qnSVgIAABQcH2/wA8CzVQ/zdHQJQaAWtEW/nIvIAAAAAUCo5nKB85ZVX9PHHH+uzzz6zLiAhSe3bt9emTZucFljmAhYnT5602X7y5EnrvuwqV64sHx8fh+4DwLMx5BUAAAAAgNLN4QTl7t27ddNNN+XYHhISori4OGfEJOnyKrnh4eE2K+MmJCRo3bp1ateuXa738ff3V+vWrW3uY7FYtGzZsjzvA6CkIWUJAAAAAEBp4nCCMjw8XPv27cux/ffff1edOnUcqispKUmbN2/W5s2bJV1eGGfz5s2KiYmRyWTSM888o1deeUU//vijtm7dqv79+6tatWq64447rHV07txZH374ofX2sGHD9Nlnn2nWrFnauXOnnnjiCSUnJ1tX9QZQMpkYAwsAAAAAQKnk8CI5gwYN0tChQzV9+nSZTCYdP35ca9eu1YgRIzR27FiH6tqwYYPNYg+ZC9UMGDBAM2fO1HPPPafk5GT9+9//VlxcnG688UYtXrxYgYGB1vvs379fZ86csd7u06ePTp8+rXHjxik2NlYtWrTQ4sWLcyycA6BkMK50mCQ9CQAAAABA6eRwgnLUqFGyWCzq3LmzLly4oJtuukkBAQEaMWKEnnrqKYfq6tSpkwwj7+GaJpNJEydO1MSJE/Msc+jQoRzbClolFwAAAAAAAIBncDhBmZ6erjFjxmjkyJHat2+fkpKS1KRJE5UrV05nzpxR5cqVXREnAC9HD0oAAAAAAEonh+egvO+++2QYhvz9/dWkSRNdd911KleunE6ePKlOnTq5IEQAuCqfTtcAAAAAAKAEcjhBGRMTo0cffdRm24kTJ9SpUyc1atTIaYEBQFaskYOSyHBw1XkS8AAAAAC8kcMJyp9++klr1qyxLmhz/PhxderUSdHR0ZozZ47TAwQAAAAAAABQejk8B2WVKlW0ZMkS3XjjjZKkhQsXqlWrVvryyy9lNjuc7wSAfNGjDKVBQT2A6SAMAAAAwJs5nKCUpMjISC1dulQdOnTQLbfcoi+++EImxl8CAAAAAAAAcJBdCcoKFSrkmoC8cOGCFixYoEqVKlm3nTt3znnRAcAVma9BdKgEAAAAAKB0sStB+e6777o4DAAAAAAAAADeyK4E5YABA1wdBwDkKnMVZCaRAAAAAACgdHJ4VZtNmzZp69at1ts//PCD7rjjDr3wwgtKTU11anAAAAAAAAAASjeHE5SPPfaY9uzZI0k6cOCA+vTpozJlymju3Ll67rnnnB4gAEgFr4IMAAAAAABKJocTlHv27FGLFi0kSXPnzlXHjh311VdfaebMmfruu++cHR8AL2cY+d8GAAAAAAAlm8MJSsMwZLFYJEm//vqrevToIUmKjIzUmTNnnBsdAAAlmKMJdYN16gEAAAB4IYcTlG3atNErr7yiL774QqtWrVLPnj0lSQcPHlRYWJjTAwQAiUVyAAAAAAAorRxOUL777rvatGmThgwZojFjxqhevXqSpG+//VY33HCD0wMEAKDUIwMPAAAAwIv5OnqHZs2a2azinemtt96Sj4+PU4ICAAAAAAAA4B0cTlDmJTAw0FlVAUAOpivLeDNDHwAAAAAApYvDCcqMjAy98847mjNnjmJiYpSammqz/9y5c04LDgBISAIAAAAAULo5PAflSy+9pClTpqhPnz6Kj4/XsGHDdNddd8lsNmvChAkuCBEAmKIPAAAAAIDSyuEE5ZdffqnPPvtMw4cPl6+vr/r27atp06Zp3Lhx+vPPP10RIwDIRIYSAAAAAIBSyeEEZWxsrKKjoyVJ5cqVU3x8vCTptttu06JFi5wbHQCvZzDGGwAAAACAUs3hBGWNGjV04sQJSVLdunW1ZMkSSdL69esVEBDg3OgAIDsSlihBHL1cScgDAAAA8EYOJyjvvPNOLVu2TJL01FNPaezYsapfv7769++vRx55xOkBAoDEEG8AAAAAAEorh1fxfv31162/9+nTRzVr1tTatWtVv3593X777U4NDgAMukyiFDAVkGEn/w4AAADAmzmcoMyuXbt2ateunTNiAQAAAAAAAOBlCpWgPH78uH7//XedOnVKFovFZt/TTz/tlMAAIDf0qAQAAAAAoHRxOEE5c+ZMPfbYY/L391elSpVshq2ZTCYSlABcgiGwAAAAAACUTg4vkjN27FiNGzdO8fHxOnTokA4ePGj9OXDggNMDrFWrlkwmU46fwYMH51p+5syZOcoGBgY6PS4AxSNzVWMTKUoAAAAAAEolh3tQXrhwQffdd5/MZodzm4Wyfv16ZWRkWG9v27ZNt9xyi+6555487xMcHKzdu3dbbxe0OAEAAAAAAAAA93A4yzhw4EDNnTvXFbHkqkqVKgoPD7f+LFy4UHXr1lXHjh3zvI/JZLK5T1hYWLHFC8BF+J4BAAAAAIBSyeEelJMmTdJtt92mxYsXKzo6Wn5+fjb7p0yZ4rTgsktNTdX//vc/DRs2LN9ekUlJSYqKipLFYlGrVq302muv6ZprrsmzfEpKilJSUqy3ExISnBo3AOdhiRwAAAAAAEqXQiUof/nlFzVs2FCSciyS40rz589XXFycHnrooTzLNGzYUNOnT1ezZs0UHx+vt99+WzfccIO2b9+uGjVq5HqfSZMm6aWXXnJR1ACcgQ6UKJHIqAMAAABAgRxOUE6ePFnTp0/PN0noKp9//rm6d++uatWq5VmmXbt2ateunfX2DTfcoMaNG+uTTz7Ryy+/nOt9Ro8erWHDhllvJyQkKDIy0nmBAygyppIFAAAAAKB0cjhBGRAQoPbt27silnwdPnxYv/76q+bNm+fQ/fz8/NSyZUvt27cvzzIBAQEKCAgoaogAXMCgBxpKgYLy66xSDwAAAMCbObxIztChQ/XBBx+4IpZ8zZgxQ1WrVlXPnj0dul9GRoa2bt2qiIgIF0UGAAAAAAAAoLAc7kH5119/afny5Vq4cKGuueaaHIvkONrD0R4Wi0UzZszQgAED5OtrG3L//v1VvXp1TZo0SZI0ceJEXX/99apXr57i4uL01ltv6fDhw3r00UedHheA4pPZv4welQAAAAAAlC4OJyhDQ0N11113uSKWPP3666+KiYnRI488kmNfTEyMzOarHUHPnz+vQYMGKTY2VhUqVFDr1q21Zs0aNWnSpDhDBuAk5CMBAAAAACjdHE5QzpgxwxVx5OvWW2+VkUe3qZUrV9rcfuedd/TOO+8UQ1QAipOJVXKK3emkNJ29kKZ6lYLk68P5BwAAcJXES+k6ci5FkhRVKVBlA3zcHBEAFC+HE5QAgNLvaFyK7v3vDklSx7ohmtSzjpsjAgAAKJ3SMizq+/FOnUtOlyRVKe+n74ZcI18zXxAD8B4OL5IDAMXJYJC3WxyNS7H+HnM+JZ+SAAAAKIrESxnW5KQknU5M06VUixsjAoDiR4ISAJAvCysTFZqjZ44zDQCA98mtqUX7C4C3IUEJoERggIv70D4GAABwHUsubS3aXwC8jUMJyrS0NHXu3Fl79+51VTwAkCvWyCleWYfW0z4uuoIuX65vAAC82JVsZNY1CWl/AfA2DiUo/fz8tGXLFlfFAgA50TpzO4YYAQAAuE7mbJPmLIvi0P4C4G0cHuL9wAMP6PPPP3dFLAAAD0T7GAAAwHUyh3ibTFdHXdD+AuBtfB29Q3p6uqZPn65ff/1VrVu3VtmyZW32T5kyxWnBAUAmGmvuk9u8SAAAAHAO40oD12wyyWwylGHQ/gLgfRxOUG7btk2tWrWSJO3Zs8dmn4lJtAA4mbVtxutLscraJjbICgMAALhMZjLSbLrymdowaH8B8DoOJyhXrFjhijgAAB6Kb/ABAABcJzMZaTJdTlJKtL8AeB+H56DMtG/fPv3yyy+6ePGiJHrYAHAt+k+6j8FKRQAAAC5ztQfl1Uko+XwNwNs4nKA8e/asOnfurAYNGqhHjx46ceKEJGngwIEaPny40wME4N1om7lH1vPO3wAAAMB1jCyL5JivTGtE8wuAt3E4Qfnss8/Kz89PMTExKlOmjHV7nz59tHjxYqcGBwCZMqegpDdf8WOIUeE5mtwlGQwAgPexXSTn8jbaXwC8jcNzUC5ZskS//PKLatSoYbO9fv36Onz4sNMCA4CsGOLtPiTNAAAAXMeSpQeliSHeALyUwz0ok5OTbXpOZjp37pwCAgKcEhQAZKJp5n4W/gpFxiL0AAAgL5m5SLOuDvGmByUAb+NwD8oOHTrov//9r15++WVJkslkksVi0Ztvvqmbb77Z6QECQHG4mJah26dtk4/ZpPtaVtVD14bJRFZJkpRwKcPdIQAAAJRoP285q7X7E6y3g/x8VC7QR6cTU5V4pa1lMplkMl3OTJ6IS1VUpUC3xAoA7uBwgvLNN99U586dtWHDBqWmpuq5557T9u3bde7cOf3xxx+uiBEAsgx3cU39c/85rQtpFknSZ3+eUOf6oapZgUZhpnSLIV8zCVsAAABHGYah1386orSM/BuyoWV8tO9UmiRp7f4EXV83uDjCAwCP4PAQ76ZNm2rPnj268cYb1bt3byUnJ+uuu+7S33//rbp167oiRgBwuQNnL9ncTkm3uCkSD8UwIwAAgELLTE4+1ilCbeuUt9k39JbqevbWGnr5rtpqX+9yUpIvhgF4G4d7UEpSSEiIxowZ4+xYACAfxdtIY94fW5dXT6ehDAAAUBS9W1ZWWoahdQcSrdv6XFfV+nutyoH6Y19CbncFgFKtUAnK8+fP6/PPP9fOnTslSU2aNNHDDz+sihUrOjU4AMhEaqx4sXAkAACAc2RvVmXtHJlXR0mD4SsAvIzDQ7xXr16tWrVq6f3339f58+d1/vx5vf/++6pdu7ZWr17tihgBeCmjGLNklmyPRQ9KWyQsAQAAnCPrQow51mTkW3kAXsrhHpSDBw9Wnz59NHXqVPn4+EiSMjIy9OSTT2rw4MHaunWr04MEAFfLnoArzuQoAAAAvINJ2XtQkpEEAKkQPSj37dun4cOHW5OTkuTj46Nhw4Zp3759Tg0OADIVd9uNHpS2OB2F4+jwLM4zAAClT/bvvbO2a/Nq4/JdOQBv43CCslWrVta5J7PauXOnmjdv7pSgACA7V+cnc/Sg9PJUkXcfPQAAgOtk7TWZvQcl/SkBeCu7hnhv2bLF+vvTTz+toUOHat++fbr++uslSX/++ac++ugjvf76666JEoBXKs4kWfbHogclihOjuwAA8B72LJIDAN7GrgRlixYtZDKZbOZke+6553KUu//++9WnTx/nRQcAxSR7D0oSlAAAAHA2vpQEgNzZlaA8ePCgq+MAgPxdacy5Lm+YY5Uclz1SSZB9kSAvPx0AAACFlr0Zld8QbwDwVnYlKKOiolwdBwDk4M6kGD0oAQAA4Ar5LZJjImEJwEvZlaDM7vjx4/r999916tQpWSwWm31PP/20UwKTpAkTJuill16y2dawYUPt2rUrz/vMnTtXY8eO1aFDh1S/fn298cYb6tGjh9NiAuAeJhdPGZ49H0l+EgAAAK5g24PSjYEAgAdxOEE5c+ZMPfbYY/L391elSpVsvuExmUxOTVBK0jXXXKNff/3VetvXN++Q16xZo759+2rSpEm67bbb9NVXX+mOO+7Qpk2b1LRpU6fGBaB4ufrL5JxzUJKizMrbVzUHAAAotGzNKLNND8rcG7k0RQF4G4cTlGPHjtW4ceM0evRomc1mV8Rkw9fXV+Hh4XaVfe+999StWzeNHDlSkvTyyy9r6dKl+vDDD/Xxxx+7MswSJf5imi6lZahcgK/KBhSqEy1QLIqzXZZ9SHfcxXSdv5CmMv4+Sk7NkK/ZpODAy8+XhEvpMptMKhfgU4wRFi/axAAAAK5hymcVbzpUAvBWDmenLly4oPvuu69YkpOStHfvXlWrVk2BgYFq166dJk2apJo1a+Zadu3atRo2bJjNtq5du2r+/Pn5PkZKSopSUlKstxMSEooctyd7cf42LfjnuMbf3kQPt6/t7nAAu2Q21lz1bbJPtpe0Cb8czlFmyI3VVKmMnyYuOSyzSXr9tjpqXzvENQF5GL7FLyacaAAASjWTyXaINwlJALjM4SzjwIEDNXfuXFfEkkPbtm01c+ZMLV68WFOnTtXBgwfVoUMHJSYm5lo+NjZWYWFhNtvCwsIUGxub7+NMmjRJISEh1p/IyEinHYMnynwTZBEQ4Krro4Ktv/vlMRnQgu1ntS02WYakDEPaefJCMUUHAACAkir7VDnNI8uqUllf+ZilmxuH5nEfAPAuDvegzJzfcfHixYqOjpafn5/N/ilTpjgtuO7du1t/b9asmdq2bauoqCjNmTNHAwcOdNrjjB492qbnZUJCQqlOUmbmXgx66sDTFeMl6udz+YnRLipYb/eqo/YfbM4ZjmHbwc2bnkHedKyuUNCKnPSeAADAe9SuEqQFz0S7OwwA8CiFSlD+8ssvatiwoSTlWCTHlUJDQ9WgQQPt27cv1/3h4eE6efKkzbaTJ08WOIdlQECAAgICnBanp8scUkB+Eshdfq9lWZ82JPkBAADgCBNfSwJArhxOUE6ePFnTp0/XQw895IJw8peUlKT9+/frwQcfzHV/u3bttGzZMj3zzDPWbUuXLlW7du2KKcKSITP5wirFKEmKexXvvGR93njVM8irDhYAAAAAUJwcnoMyICBA7du3d0UsOYwYMUKrVq3SoUOHtGbNGt15553y8fFR3759JUn9+/fX6NGjreWHDh2qxYsXa/Lkydq1a5cmTJigDRs2aMiQIcUSb0mROcSbOSjh6bLP15PXNqcqIBGa9XlDjh8AAAAFcaTNaLJOx+WaWADAUzmcoBw6dKg++OADV8SSw9GjR9W3b181bNhQ9957rypVqqQ///xTVapUkSTFxMToxIkT1vI33HCDvvrqK3366adq3ry5vv32W82fP19NmzYtlnhLCjM9KFECecpgmKzDur3pKeRFhwoAAAAAKGYOD/H+66+/tHz5ci1cuFDXXHNNjkVy5s2b57TgZs+ene/+lStX5th2zz336J577nFaDKWR+UpamvnzUJK4eo5be58NNj0oS3HajpcHAAAA53P1tEUAUFI5nKAMDQ3VXXfd5YpYUGwye1C6OQzAAxXUZvTeVby96WgBAACcx5FW1NW2KG0vAN7F4QTljBkzXBEHitHVOSh504Nn88RLNGuizhPjAwAAAACgpHF4DkqUfJlzUJJcQUmS+W2yy65be+o1ec8iOdkPrTQfqys5et44zQAAAAC8kcM9KGvXrp3vXHAHDhwoUkBwPbN1ZTg+CqME8ZD5egwvmYMSAAAATlKIJiMf1QB4G4cTlM8884zN7bS0NP39999avHixRo4c6ay44EImE3NQomRwxyVaUB7U4qWreKNoCrquXL0IFAAAKBloEwDwVg4nKIcOHZrr9o8++kgbNmwockBwPbM1QUl2BXCUty6SAwAAgKIj/wgAuXPaHJTdu3fXd99956zq4EJXF8lxbxyAI1zdlrP36eA1c1BmO7jSfKwAAAAAAPdyuAdlXr799ltVrFjRWdXBhcxXMpQbD59zcyTAZYZh6PutZ3Q8IdVme4Ybsuj5fasdcz5FFsvV2+TsAABAYZy/kKZFO8+pc/0Kigj2d2rdq/bHaeuJZF0fFaw2keWdWre3SLqUoe82nlZYsL+6RV/+jGsxDL2/9JjWHUjQJwMaKDjI/o/SjrQZrQtDOnAfACgNHE5QtmzZ0mZeDMMwFBsbq9OnT+s///mPU4ODa6SmX86wbDuW4OZIgMt2n76ot1cezXO/n9kkP5/iHQ/jZzYpLZcE6dH4lKs36FYIAAAK4T9rjmvRjnPacCRR795Rz2n1XkzL0OhFByVJi3ac1c//bua0ur3JL9vO6ZOVJyRJrWuVV5Xyftp+LFlz1p+WJL2y4LDevLeuO0MEgFLH4QTlHXfcYXPbbDarSpUq6tSpkxo1auSsuOBC/9eoqmauOaSQID93hwJIki6kZkiSggN9dFuTSjn2N4soK38fp81IkavsQ5o/vLueFm4/pzL+Zm09kawdJy9IkgJ8TTIMKTXD8KppErzoUAEAcLnFuy6PZPorJtGp9aamX33HTk615FMS+Um+0jaVMtupfkpOuXo+f99b+I4eTEEJALlzOEE5fvx4V8SBYlSp3OVhJAYpB3iIzNxgpTJ+GnJj9VzLnExMzXW7811uNkZHlFN0RDlJ0pnkNPX6fJskqay/j+5oWlnT/4rlGQQAAArFVYMwsi6CSSKsCHKZc7woC4xm/yI8XybbxwUAb+HaLknwSCZlruLt5kCAQnBHY81syv13b+JQwxpWjp41TjMAeAdXvd4befwOx2Q9d5mJSd6jAcC17O5BaTabbeaezI3JZFJ6enqRg4JrmfhWDh7GEy7F/GIwZbtltj6HPCFyAABQ0riqBZG1AwKjpZzjag9K59RX0GdqAPBWdicov//++zz3rV27Vu+//74sFuY5KQmuvifSaEHJUVxNudzajOYsG0262rAszb2Qs+deS/GhAgBQath8ecqbd6FlPY2ZPSiLNMTbgbKkLwF4K7sTlL17986xbffu3Ro1apQWLFigfv36aeLEiU4NDq7BEG94Kk/9QjmvuHgKwV4FXdseeukDAEoYC/lJp7Ad4n1lGycUAFyqUHNQHj9+XIMGDVJ0dLTS09O1efNmzZo1S1FRUc6ODy7A8FQgp3yHeJvyuM1TCAAAeBA6IDifMxbJyYovJQEgdw4lKOPj4/X888+rXr162r59u5YtW6YFCxaoadOmrooPLmCdg9K9YQBWmclyexps7rhuzdkiy3zhZG4nAADgWa62TeiLUAS5rOJdpOoKUQedSQB4G7uHeL/55pt64403FB4erq+//jrXId8oKS4nW3jPQ0lSXMO/c3uYHI995XZp7qWQ/dB4vQAAwPMxxNs5DJtEb+YclMXz2J465REAuJrdCcpRo0YpKChI9erV06xZszRr1qxcy82bN89pwcE1TNbkCs0WeBa3NsjyeTqYTdnX8ablCAAAPA/Ne+fLXAbWaZ+daEYCQK7sTlD279/funItSjYzY7zhYTz9UsxrDkpv+hDgRYcKAECJlT2JZhgGn+EKwWYx9Cs3vKndBwDuYHeCcubMmS4MA8WJ9T2AvOXWhjebcr/NHJQAAMCTZB+GbIgOe4WR2yrexTbEO3M6ruJ5OADwGIVaxRslG0O84WkyL0V7hk67KimY/yreucfFHJQoiKPnjdMMACiK7Aur8P5ddJntPRatAQDXIkHphUwskoMSyX3f/2fvQckclAAAwBNZst2muV9IuQzxdtYX07QiASB3dg/xRumR2RnsYlqGukxZpR8Gt1fZgJyXwsajSRq/5IjK+Jv16T0NVaWcXzFHCm/hSY3nXFfxzn77yoYlu89r/K1RXjK309W/0itLD2vlvjiNuzVKN9UNdV9IAAB4kFeWHtYvu85JJulfzapo6E01bPanplv077l7tP/MRZfFsO1Esu0GT2pklVBP/W9fkU+jQx1DvHCucwCQ6EHplaoGB6hGhSBJ0r5TSdp9MjHXcuuPJCkxJUMnE9O042RyrmUAb2AymRQdUVaS1KFOiBpUCbLuS0zJcFdYbvPTznO6kGbRD9vPujsUAAA8xvK9ccowpAyLtHJ/XI79x+JTtOf0RWW4MPF0NjnN5jbzZReOkcfvmW5qEFJcoQCA1yBB6YUCfH20YkQnBfn5SMr72zmaMyg2mXNQurEjYkHzCk39V30tfLSpRtwcqWbVyhVTVO5jzxxWGaV5Ek4AABxkM797Lm+RmcOvgwN9VD7AxyUxMIe0c2S2g/6vcah+fLppjv1Vgws/sswrBt4AQCGQoPRSfj5mhYcESsonMUODBp7I5ddl7q1Gs8mkimX88ikBAAC8WdYmdW7f4WXu9zWbXDZ1UvZmPc35oqlY1leVy+f8Wzm+CJ79d8hsZ/K3A+BtSFB6saureee+P+sbKd++wpUyr7X8En+e+m0zzw0AACBJlqxt51zSS5k9LM2mnAvwOS0GGiZOcfUs5v6HYhAJADifRycoJ02apGuvvVbly5dX1apVdccdd2j37t353mfmzJkymUw2P4GBgcUUcclivpLxyashU9DcK0Bp4tDc5Vnaqt7y3PCW4wQAoLDs7UFpuvLPFbI/LvnKwnHleXPV3x4ASjqPTlCuWrVKgwcP1p9//qmlS5cqLS1Nt956q5KT81+wJTg4WCdOnLD+HD58uJgiLlnM1h6UeSQoadCgmGReap7QS9KeGDwgTAAA4GEsBSQoM7e5sgdlziHeNOiLIq92YUFzl7viMQGgtPN1dwD5Wbx4sc3tmTNnqmrVqtq4caNuuummPO9nMpkUHh7u6vBKvMxv7+x5f3XlmzBQknnLc8M7jhIAgMLJubhczndO42oXSpmyZKEMw7C5XRQW3rGdKq+/iqNnuVDNRf6UALyMR/egzC4+Pl6SVLFixXzLJSUlKSoqSpGRkerdu7e2b9+eb/mUlBQlJCTY/HiDzHZQnmvk8KaIYnL1Wiu4ce6yy9KBim0+VLggFE/mLQlZZ6HnCgB4hxyrZ+dTxmwyuW66GIZ4O0VBp405KAHA+UpMgtJiseiZZ55R+/bt1bRp0zzLNWzYUNOnT9cPP/yg//3vf7JYLLrhhht09OjRPO8zadIkhYSEWH8iIyNdcQgex5E5KAF3Y7RL8coxROzKbRrkAADkZM/cj5arHShtPoQ58701RxzOq9or5dmxtSgnlkYtAOSqxCQoBw8erG3btmn27Nn5lmvXrp369++vFi1aqGPHjpo3b56qVKmiTz75JM/7jB49WvHx8dafI0eOODt8j2S+8tfPO0HJKt4oXp4w544HhODReC0onIKuK0+49gEAhZd9hEFu7evMMuYrC3nmdd+iyPG4vG8XSkF/E1eOkMi8MhiFAcDbePQclJmGDBmihQsXavXq1apRo4ZD9/Xz81PLli21b9++PMsEBAQoICCgqGGWOJk9KBniDTjefjcV4j4l2+WjzesLDQAAvJkjPSizL5LjzB6U9gw1R8EKOm80hwDA+Ty6B6VhGBoyZIi+//57LV++XLVr13a4joyMDG3dulUREREuiLBkMxUwxDsr3oPhSlnmjLe7rKfwtHhczcsOFwAAu2RvD+SWdMzslWcy2facd2ZbIucQb965iyLPVbyLUmcR7gsApZlH96AcPHiwvvrqK/3www8qX768YmNjJUkhISEKCgqSJPXv31/Vq1fXpEmTJEkTJ07U9ddfr3r16ikuLk5vvfWWDh8+rEcffdRtx+GpMr+5zetbW29LvACS/UNtTabLz5HS+jTJ0QPDOgdlaT1iAAAKL/v7Y27vl1d7UJqsI5nyKltYOVcTd1rV3qWA8+boeXWofAELmQJAaeXRCcqpU6dKkjp16mSzfcaMGXrooYckSTExMTKbr3YEPX/+vAYNGqTY2FhVqFBBrVu31po1a9SkSZPiCrvEyGwW0YMSniK/3KCr5+grzBBvb8QiOQAA5JTX4nI227L8Xlw9KFE0pjxafPRMBQDn8+gEpT0TRq9cudLm9jvvvKN33nnHRRGVLpnf3F5Ky8h1f9az78zJu4HsHLm6DElzNp9SzdBAXV8rONcy+89c1MajiQry89H/1Q9VWX8fp8SZazxe8tRYtPOcQgJ9lJpx9YCPx6dqzuZTqh4SoPa1Q9wYHQAA7mXJ1prJMAx9v/WMmoSV0ZYTyfrzcIIqlrn80ctssv2ic97WMwrwvbwlyM9H/1cvVGUDCtd2SbiUbnN74Y6zurtZFQX4evTMXh5n36mLkvL+gnzx1vPq0ayS2tQq73DdLIwHALnz6AQlXOtS+uXE5LZj8erdonqO/d6SeEHJ8+7qY5KkuQOaqHpIzgWuRvy4XyeT0iRJp5JSNbCtC+agta6SUzqfKNmf/zP+is1R5mh8ivVv8b9+jVSnUlBxhAYAgMdJTc8+xFt6a8WRXMsG+JpVr3KQNh5NkiRNXXPcZn9sYqoGXV+4tsv5i7YJyg9/P64gPx/dGV25UPV5q3UHEiVJGVe6pFYL9dfxuFSbMk9/uU9rxrR0+mPn1WsTAEo7EpReLDMBERzol1eJYosF3s1wZJWcLOIvpueaoMzaOI/P1lCH47o0CLW5nZxq0T/HknRD7WCtOZigC2kWznNeHJ6jitddACiJ0rOMrX7mpur6Zfd57Tx5IUe5WxtW0O1NKqlJeBkt2X1eQX5mNQkvI0naf+aSDp67pLgivKdWLpuzXV+U+ryVv69JqemGOjYMlSSN711LP/59Rou2nCtUfYV5d6dFAMDbkKD0Ys0jQ7X9eELei+Rk/Z13SHggexZ4svfSdTQxZLrShbK0Pzfa1iyvid1q57n//i926tD5SzSiAQBeLfN90M9s0r0tqqqMv492nozJUW5C11rW3xcNirbZN33dCU1bF1ukL6tym1ueL78K4copCw/xlyRF1yir6BpldSI+VZsOJ7kxMAAovZiMxItdXcU790YLbRkUl8xLzd4hLZml8pqgPOs8UI5ex3av4m2NwbuZWGnSLqYCLiwGcwFAyWYdDHLlBd1ciBf2zPeKoix0k9v7MQvnOM7aNs32dyzM3zW7gqpgjkoA3ooEpRfLXCQnr29VjTx+B9zNx5x/A74wPSiRnWNnjvMMAPBmme3pzORSYeYRNDvhS7/c2ka8Rzsur9mHsn/haG/vVHqxAkDBSFB6MXNB39LyPopiZu83xj5XXrnyunYL01PA0btYew46/lClCt/yAwCQczRI4XpQXv4/+4rgDsWRSyIsr9FSyFvmKJ3sf8bsf1fOLAA4DwlKL2YqaIh3EYbJAq7kk0/v36J+Q83KibYKSkBah7rzIgEA8GKZb4OZCazCfIGX2QZxeg9K3qILL9sf0pztdmG+FGfaFwDIHQlKL2Yd4p3HfiOfW4Az2bOId9Z9V6cnyKWuHHW79tql0X8ZpwEAgKsKSkLlxhlDvHO7K22VQrB7lUXnVmdzH/5uALwMCUovxiI5KKkyh3jndolm/ybb7su40IvplM4nir1HxSI5AABcbU9bF8kpRB0FjW6yR65DvEtpW8WVrg7Zt5V9iDfD5wHAeUhQerH8eqFlx1svXCmvlRLzcnWRnIKHeNNudC3rcDQ3xwEAgDtln4OyMEO8CxrdZA+GeDtH9lXZM5mzZSg5twDgPCQovVjm0BNLHpOn8IYLT+WTzwJPhe5BeYW9HyicMU9USWD3nJyl/DwAAJCf7Amt7HMV2sM5PShzbqOXn+Py6kGZ/bbd59aBP8HVhRj5uwHwLiQovdjVRlDu+7Nupl0DV7JnnsisJcyZQ7xz7UGZzx3trN8erOJ9Gat458/R68PbrycAKOky3xeL1IOySIvk2NE2gv2y96DMMcS7+EIBgNKOBKUXK3AOyqyreBdHQICd8u9BmX15J67ewrD3w4x1FW/OMwDAi1nnoLxyuzA9KDM/mBUl6WXP6BLkL+sX4Dl6UJqKNsSb73UBIG8kKL3Y1W9pabXAM+Q3nDhr4zpzDspcV/Eu4hBve1kTc6X96VNAS5qepPYp6ANJYVZ7BQB4jhxzUBamEuvCc0UY4p3LOzJtfcdkPVvZ359ZJAcAXIcEpRczFTQRt5HH74AbZG3/mfNJiuUY4W3vEG+u8ULyjrk4AQDIV7Y5KN21SE6uX94WoT5vlPUc5vgzFvL7xML8DWhbAfA2vu4OAO6TmeT5buNRLdt5KsseQ+np6Yq/lOGWuEoKwzA0/pdD2nbigupVDtSknnWsPfuKavne8/p4zQkFB/poUs/aqlLO3yn1OtvppFSNXnRQIUG+euO2OvIt5PHntVKibZmrrbTM8zxpWYzeWWXOsxwKz96zSMc/AHDchiOJmrLyqC6lWwosG+Br0vBOkWoTWb4YIkNhWXtQWhfJcbyOzPv+eThBd83YLkmKTUxV9RB/Pdm+unacTNayPXGqWMZXr/WorTSLobE/H1Tlsn6a1LOO3lpxRBuPJuWo97stZ/Ro2wiFBPHRzx62PSht92X/sy7edk73XlvV1SEBKGX+OnROExbs0v81rqrR3Ru7OxyPwbuUF6tbpZwkKTk1Q8mpF/MtS8onpzPJ6fp1T5yky43Ho/EpiqoQ6JS6f955TkfjU6R4acORJHVvXNEp9TrbhiNJ2nHygiTp8PlLqlspyGWPFRrkqwpBvvIxS42qltGBs5cUdzG9wPu5am4gVli8zGuGugOAEy3be16Hzl+yu/yve86ToPRwRrY5KCNDA2U22U5Rc2+LKvnWERUaIElKSTcUm5hq3X4sPlUf/X5MZy+kWfdtOJqoS2kW7Tp1UdJF7Tl9UT9uP2u9T8e6IVq1P956+5/jSbqpbmiRjtFr5NOmubtNFf26I856+7c98Q4lKO35YpdpX4DS739/HtHeU0naeyqJBGUWJCi92O3Nq+maasFKvGSb5ElPT9fx48fl5++nN1Yc18Fzl+iVlovsc85YnDgDedaqPHlum6yxOeP482uO+fuaNbt/Y5llUqCfWfc0r6KMfM7NmoMJmv5XrN0JRG9PNOalwLkTr/zP2QMA+1mudJy8K7qyejTJ+0vIn3ac07ytZzy6LYDLLNlGg9QIDdD3DzfV6eRUhZf3V4bFUOWyfvnW0bJGeX33UBOdv/IF7IgfDijuSjs94VKG9bqRLl9DWZte6Vl2zunfRNVD/HUkLkWPf7tXcRfTWSjHAVnbhNlzhc0jy2nOk000/bcTWrz1vP11FuL88ycDSq9L6YxWzQ0JSi9X50ovyqzS0tJUPu2cAgICVD3EXwfP2f8NvzfJ3tAreJCWI3VnWUHdg1snhk0itQj12FmufMDVl6yGVcvkW3bzsctDnFx1/kzMvXiZEyb0BwBvY7nyzhdW3l9NwsrmWW7jkcvvZSSXSo6sC/5VKeenKuXyT0pmFxEcoIjgyz0p/X1ts2OWLC0mi2HYtBczsjREw8v7y2QyqWaFQNWqEKjNF5NIcjvAdg7KnF/V1qgQoBvqhWjx1vO0AwHAiVgkBwUo+mTdpVX2hIwzGyglsQelp0bpaFz2jqop9atX23lgJl4jAMBhmW+fBc1TaF0UjhdZj5d9DkpnyF6XzRfD2W5nZGk8Zr0f15Dj8puDMlPmeXX0ywN7Lg8GeAPwViQoYRfaNDnl6EHpxJZf1qElzuyZ6WxZYyvK8Vvv6cxGPc27YsE0SQDguMz3zIJeQ03WJAgtMU9nXfDPiXWas1wghgybtqdh2LZFs057Y5P4zryGnBgXrrJ3BEmhnsE87YFSi7f13JGgRL5IPtjPmS8yhpH77x7Hg+MsrmvX047b2eyeg7KUn4fCcvS0cB4B73A1mZX/qyy91EsOwwUZyvyqshiGzRfamT0oTbJdZOVqD0quIrtlHeKdZw/KyzuYfgFAUfH6fBUJStiH50wOORbJcVmC0nNPvrPmysy+8qUzefDpK1U4zQBgv8zXTIZ4lx5X/6bOa81krSrHNWBknxLoyuNn+3THnNmOs+dUmQr73KTzB4BseH2+igQl8sV7aN6yJySdmUjMPoTHU9kkUj0sRXV1dWnH4rJ3aHhp711s71kz0TPDLqX9egHgGIZ4lz6uH+JtyyJlWyTn8u/mbBEUdq5Eb5a1TZPX3zPzb+OK9g9tBsC78B5/FQlK5KvULwRSBNkbJE7tQVki56Asen1ObZA5+M22o+8LV4c28+wAADjm6iI5+b/xXU2CuDoiFJUr/kRZL4+cI3cM20Vy8uhBab2GaM3bzXaRnNyfow4nfgvxJOYvBngHvkC6igQl7EISJqfsiUNnNvxK4irenvbCWlxfPnvYYTtdgb17GDoGAA7LfM+0vwela+NB0Rl29op1RNbekNnfZ3MskpPZgzJbAFxDjst6rvP6czKCBICzePLn/eJGghL5YoRB3nJrKDqLs+Z2dDVnzZVp72IBjjAVsteJvR8sSvsq4fb+PellDQCOy3yNtbsHJa+yHs/Vc1BmTzBm/0B7NUFpW455TIvIyYvklPb2IwD7MJVD7khQogCsHpmX4lokx5O/USkJPSjtHnlTyAfwsMMudo6eZwAAPShLI9fMQZm1ftuL4HIPyqztsLx6UJps9qNgjvWgtLPOQsXB3wzwBrw+X1UiEpQfffSRatWqpcDAQLVt21Z//fVXvuXnzp2rRo0aKTAwUNHR0frpp5+KKVJ4k5w9KL18kZyi9KB0QizZXZ0j0gWVe5UCx3hLohENAI6w2JnMYr7jksP6F3JihjL/HpS2bZwMS877ZA2HS8h+WXss5/UlQuZmC1/RAigE2w5J7ovD03h8gvKbb77RsGHDNH78eG3atEnNmzdX165dderUqVzLr1mzRn379tXAgQP1999/64477tAdd9yhbdu2FXPkpYOJ7lF5yrGaolPPkZHLb57HyON3j2BtULomMhdXX2IwOgEACsPBId5e/l5TImTOQenEKrMOB85+CRgybHrdpOfRg9LMiA+H2fagzGuRHNdNJcTQT8C70IPyKl93B1CQKVOmaNCgQXr44YclSR9//LEWLVqk6dOna9SoUTnKv/fee+rWrZtGjhwpSXr55Ze1dOlSffjhh/r444+LNfbSZM/pi1q5L87dYXiUo/EpNrf/PpakxJQMp9SdcOlqPfvOeO6533fmovX3zceSdCG1cGuO7zx5QZJzG2SZVZ1OSrPr/O3PciyOWH8kUUfiUgouWMLsPm3f+cj8m+04eUH+Ph7/nVexS7iU7lD54wkpHvt8B+A8p5PSJNk/xPt0sn3vZXCfA2cvv286cw7K7PNJ2j7eJaWmX2137brSlsp+n8wh3rtOXSix11BKWopikyw6npqoAL9Ulz/exdQs7fm8elBe2Z50KUMrd8UVWGfcBcfaA5J0KiHNrrpRsAxLui6mXpKSpaCADPn4FG8aJCPjyuOfkYL8MuRjzvn4GZZ0pWWkq1LgaZ09kyQ/v0sujTO/51VKWopiYy06nuTYcy63Ogtblz3nzJPldc1lZKQrLS1dpxKvfn5cuv2kalUuo9ZRFd0Vrsfw6L9yamqqNm7cqNGjR1u3mc1mdenSRWvXrs31PmvXrtWwYcNstnXt2lXz58/P83FSUlKUknL1AklISCha4KWI75VWzoIdZ7Vgx1k3R+PZpv8V65J6l+w+ryW7z7ukbmeauf5kkevwya8l7qDMa3f7yQt64aeDTo8hs/73fzvmeHAliG8BOcfM8zBn82nN2Xy6GCIqmXwK+MCamdvdcCRJG44kFUNEADyBbwHvOX5X9u85fdGh9zK4T0F/U4fq8sm7ruxtwx+3X26n+2V7fL8rdSzYflYLtpf0tvzxYn00synvHrGZ5/VUYppe+M657czMNsOWo8nacpTnvfc5UcyPl9/zqrDPudzuV7zP35Jk+Nx/dHPDKprx8HXuDsXtPDpBeebMGWVkZCgsLMxme1hYmHbt2pXrfWJjY3MtHxubd/Jo0qRJeumll4oecCl0V7PKOnchTWkZdDvOjckklfP3UVJqhtOHX8VfSleFID+P7/K95USygvzMql85qEj1+JpNurd5FSdFJbWvHaKOdRN03oFvrAN8zep9TSW7yj7SNlyLd50r1cPufH1MurtZ/n+Te1tUVWq6oXQmT8lT1fJ+alG9XL5lOtevoK3Hk53WCxuA56tYxk/tooLzLXN9VLA61Q3VuQtpxRQVisJkUoHvm454oHWYvthwUjtOXlB0RFmZJFUq66eklAylXOk9ueVEssoH+Kh2xUCZTFKPxrbtmLuiL7flU9NL7vt0hmHRpbSLCgwIko+5+EZr3FAvOM+EYpNqZdU9uqKOnXdsFE2nRqEFlrmpQYj+Opio+EL0ukTuDBnKyMiQMiQfs4+1Z3GxPb5hKMOSIfleefxcUt+Xp22wKMAcoJSUFJnNZpfGmd/zKsNi0aVLFxXo59hzLrc6C1uXPefMk+V1zRmGIYvFosDAQG2MiVPtymVVqay/6oeVd3PEnsFkePCs28ePH1f16tW1Zs0atWvXzrr9ueee06pVq7Ru3boc9/H399esWbPUt29f67b//Oc/eumll3TyZO49vHLrQRkZGan4+HgFB+ffcCyN0tLSdPDgQQUEBMjPz8/d4QAAAADwUhdSLmj/2f2qG1VXZQLLuDsclEBpGWlKupgkxUnlypQr9s+4aWlXHj9UKhdYTn4+OR8/LSNNKekpqlGuho7GHHX5Z/H8nlcXLl3Q/gP7VbeKY8+53OosbF32nDNPltc1l5aWppSUFNWuXdtrci0JCQkKCQmxK7/m0T0oK1euLB8fnxyJxZMnTyo8PDzX+4SHhztUXpICAgIUEBBQ9IABAAAAAAAAOMSjVzTw9/dX69attWzZMus2i8WiZcuW2fSozKpdu3Y25SVp6dKleZYHAAAAAAAA4D4e3YNSkoYNG6YBAwaoTZs2uu666/Tuu+8qOTnZuqp3//79Vb16dU2aNEmSNHToUHXs2FGTJ09Wz549NXv2bG3YsEGffvqpOw8DAAAAAAAAQC48PkHZp08fnT59WuPGjVNsbKxatGihxYsXWxfCiYmJkTnLZKs33HCDvvrqK7344ot64YUXVL9+fc2fP19NmzZ11yEAAAAAAAAAyIPHJyglaciQIRoyZEiu+1auXJlj2z333KN77rnHxVEBAAAAAAAAKCqPnoMSAAAAAAAAQOlGghIAAAAAAACA25CgBAAAAAAAAOA2JCgBAAAAAAAAuA0JSgAAAAAAAABuQ4ISAAAAAAAAgNv4ujsAT2QYhiQpISHBzZG4R1pampKSknThwgX5+nKJAAAAAHCPS2mXlJyUrPiEeF26eMnd4aAESrekKyU1RUqS0lLSiv0zbnp6ulLSUyQfKe1SmnzNOR8/3ZIui2FRgiWhWD6L5/e8upR6ScnJyYr3j9elC/Y/53Krs7B12XPOPFle11x6erosFosSEhLk5+fn5iiLR2ZeLTPPlp+S9VcuJomJiZKkyMhIN0cCAAAAAAAAlFyJiYkKCQnJt4zJsCeN6WUsFouOHz+u8uXLy2QyuTscp0lISFBkZKSOHDmi4OBgd4cDFAuue3gbrnl4I657eBuueXgjrnt4m9JwzRuGocTERFWrVk1mc/6zTNKDMhdms1k1atRwdxguExwcXGIvbqCwuO7hbbjm4Y247uFtuObhjbju4W1K+jVfUM/JTCySAwAAAAAAAMBtSFACAAAAAAAAcBsSlF4kICBA48ePV0BAgLtDAYoN1z28Ddc8vBHXPbwN1zy8Edc9vI23XfMskgMAAAAAAADAbehBCQAAAAAAAMBtSFACAAAAAAAAcBsSlAAAAAAAAADchgQlAAAAAAAAALchQelFPvroI9WqVUuBgYFq27at/vrrL3eHBBRowoQJMplMNj+NGjWy7r906ZIGDx6sSpUqqVy5crr77rt18uRJmzpiYmLUs2dPlSlTRlWrVtXIkSOVnp5uU2blypVq1aqVAgICVK9ePc2cObM4Dg+QJK1evVq33367qlWrJpPJpPnz59vsNwxD48aNU0REhIKCgtSlSxft3bvXpsy5c+fUr18/BQcHKzQ0VAMHDlRSUpJNmS1btqhDhw4KDAxUZGSk3nzzzRyxzJ07V40aNVJgYKCio6P1008/Of14gYKu+YceeijHa3+3bt1synDNoySZNGmSrr32WpUvX15Vq1bVHXfcod27d9uUKc42DZ8LUBzsue47deqU4/X+8ccftynDdY+SYurUqWrWrJmCg4MVHBysdu3a6eeff7bu53W+AAa8wuzZsw1/f39j+vTpxvbt241BgwYZoaGhxsmTJ90dGpCv8ePHG9dcc41x4sQJ68/p06et+x9//HEjMjLSWLZsmbFhwwbj+uuvN2644Qbr/vT0dKNp06ZGly5djL///tv46aefjMqVKxujR4+2ljlw4IBRpkwZY9iwYcaOHTuMDz74wPDx8TEWL15crMcK7/XTTz8ZY8aMMebNm2dIMr7//nub/a+//roREhJizJ8/3/jnn3+MXr16GbVr1zYuXrxoLdOtWzejefPmxp9//mn89ttvRr169Yy+ffta98fHxxthYWFGv379jG3bthlff/21ERQUZHzyySfWMn/88Yfh4+NjvPnmm8aOHTuMF1980fDz8zO2bt3q8nMA71LQNT9gwACjW7duNq/9586dsynDNY+SpGvXrsaMGTOMbdu2GZs3bzZ69Ohh1KxZ00hKSrKWKa42DZ8LUFzsue47duxoDBo0yOb1Pj4+3rqf6x4lyY8//mgsWrTI2LNnj7F7927jhRdeMPz8/Ixt27YZhsHrfEFIUHqJ6667zhg8eLD1dkZGhlGtWjVj0qRJbowKKNj48eON5s2b57ovLi7O8PPzM+bOnWvdtnPnTkOSsXbtWsMwLn8INpvNRmxsrLXM1KlTjeDgYCMlJcUwDMN47rnnjGuuucam7j59+hhdu3Z18tEABcuerLFYLEZ4eLjx1ltvWbfFxcUZAQEBxtdff20YhmHs2LHDkGSsX7/eWubnn382TCaTcezYMcMwDOM///mPUaFCBet1bxiG8fzzzxsNGza03r733nuNnj172sTTtm1b47HHHnPqMQJZ5ZWg7N27d5734ZpHSXfq1ClDkrFq1SrDMIq3TcPnArhL9uveMC4nKIcOHZrnfbjuUdJVqFDBmDZtGq/zdmCItxdITU3Vxo0b1aVLF+s2s9msLl26aO3atW6MDLDP3r17Va1aNdWpU0f9+vVTTEyMJGnjxo1KS0uzubYbNWqkmjVrWq/ttWvXKjo6WmFhYdYyXbt2VUJCgrZv324tk7WOzDI8P+AJDh48qNjYWJtrNCQkRG3btrW5zkNDQ9WmTRtrmS5dushsNmvdunXWMjfddJP8/f2tZbp27ardu3fr/Pnz1jI8F+ApVq5cqapVq6phw4Z64okndPbsWes+rnmUdPHx8ZKkihUrSiq+Ng2fC+BO2a/7TF9++aUqV66spk2bavTo0bpw4YJ1H9c9SqqMjAzNnj1bycnJateuHa/zdvB1dwBwvTNnzigjI8PmIpeksLAw7dq1y01RAfZp27atZs6cqYYNG+rEiRN66aWX1KFDB23btk2xsbHy9/dXaGiozX3CwsIUGxsrSYqNjc312s/cl1+ZhIQEXbx4UUFBQS46OqBgmddpbtdo1mu4atWqNvt9fX1VsWJFmzK1a9fOUUfmvgoVKuT5XMisAygu3bp101133aXatWtr//79euGFF9S9e3etXbtWPj4+XPMo0SwWi5555hm1b99eTZs2laRia9OcP3+ezwVwi9yue0m6//77FRUVpWrVqmnLli16/vnntXv3bs2bN08S1z1Knq1bt6pdu3a6dOmSypUrp++//15NmjTR5s2beZ0vAAlKAB6te/fu1t+bNWumtm3bKioqSnPmzCFxCACl1H333Wf9PTo6Ws2aNVPdunW1cuVKde7c2Y2RAUU3ePBgbdu2Tb///ru7QwGKTV7X/b///W/r79HR0YqIiFDnzp21f/9+1a1bt7jDBIqsYcOG2rx5s+Lj4/Xtt99qwIABWrVqlbvDKhEY4u0FKleuLB8fnxyrQ508eVLh4eFuigoonNDQUDVo0ED79u1TeHi4UlNTFRcXZ1Mm67UdHh6e67WfuS+/MsHBwSRB4XaZ12l+r+Hh4eE6deqUzf709HSdO3fOKc8F3ivgbnXq1FHlypW1b98+SVzzKLmGDBmihQsXasWKFapRo4Z1e3G1afhcAHfI67rPTdu2bSXJ5vWe6x4lib+/v+rVq6fWrVtr0qRJat68ud577z1e5+1AgtIL+Pv7q3Xr1lq2bJl1m8Vi0bJly9SuXTs3RgY4LikpSfv371dERIRat24tPz8/m2t79+7diomJsV7b7dq109atW20+yC5dulTBwcFq0qSJtUzWOjLL8PyAJ6hdu7bCw8NtrtGEhAStW7fO5jqPi4vTxo0brWWWL18ui8Vibei3a9dOq1evVlpamrXM0qVL1bBhQ1WoUMFahucCPNHRo0d19uxZRURESOKaR8ljGIaGDBmi77//XsuXL88x/UBxtWn4XIDiVNB1n5vNmzdLks3rPdc9SjKLxaKUlBRe5+3h7lV6UDxmz55tBAQEGDNnzjR27Nhh/Pvf/zZCQ0NtVocCPNHw4cONlStXGgcPHjT++OMPo0uXLkblypWNU6dOGYZhGI8//rhRs2ZNY/ny5caGDRuMdu3aGe3atbPePz093WjatKlx6623Gps3bzYWL15sVKlSxRg9erS1zIEDB4wyZcoYI0eONHbu3Gl89NFHho+Pj7F48eJiP154p8TEROPvv/82/v77b0OSMWXKFOPvv/82Dh8+bBiGYbz++utGaGio8cMPPxhbtmwxevfubdSuXdu4ePGitY5u3boZLVu2NNatW2f8/vvvRv369Y2+ffta98fFxRlhYWHGgw8+aGzbts2YPXu2UaZMGeOTTz6xlvnjjz8MX19f4+233zZ27txpjB8/3vDz8zO2bt1afCcDXiG/az4xMdEYMWKEsXbtWuPgwYPGr7/+arRq1cqoX7++cenSJWsdXPMoSZ544gkjJCTEWLlypXHixAnrz4ULF6xliqtNw+cCFJeCrvt9+/YZEydONDZs2GAcPHjQ+OGHH4w6deoYN910k7UOrnuUJKNGjTJWrVplHDx40NiyZYsxatQow2QyGUuWLDEMg9f5gpCg9CIffPCBUbNmTcPf39+47rrrjD///NPdIQEF6tOnjxEREWH4+/sb1atXN/r06WPs27fPuv/ixYvGk08+aVSoUMEoU6aMceeddxonTpywqePQoUNG9+7djaCgIKNy5crG8OHDjbS0NJsyK1asMFq0aGH4+/sbderUMWbMmFEchwcYhnH5+pOU42fAgAGGYRiGxWIxxo4da4SFhRkBAQFG586djd27d9vUcfbsWaNv375GuXLljODgYOPhhx82EhMTbcr8888/xo033mgEBAQY1atXN15//fUcscyZM8do0KCB4e/vb1xzzTXGokWLXHbc8F75XfMXLlwwbr31VqNKlSqGn5+fERUVZQwaNChHo5prHiVJbte7JJv2RnG2afhcgOJQ0HUfExNj3HTTTUbFihWNgIAAo169esbIkSON+Ph4m3q47lFSPPLII0ZUVJTh7+9vVKlSxejcubM1OWkYvM4XxGQYhlF8/TUBAAAAAAAA4CrmoAQAAAAAAADgNiQoAQAAAAAAALgNCUoAAAAAAAAAbkOCEgAAAAAAAIDbkKAEAAAAAAAA4DYkKAEAAAAAAAC4DQlKAAAAAAAAAG5DghIAAAAAAACA25CgBAAAgCRp5cqVMplMiouLy7dcrVq19O677xZLTAAAACj9SFACAACUIA899JBMJpNMJpP8/f1Vr149TZw4Uenp6UWu+4YbbtCJEycUEhIiSZo5c6ZCQ0NzlFu/fr3+/e9/F/nxAAAAAEnydXcAAAAAcEy3bt00Y8YMpaSk6KefftLgwYPl5+en0aNHF6lef39/hYeHF1iuSpUqRXocAAAAICt6UAIAAJQwAQEBCg8PV1RUlJ544gl16dJFP/74oyTp/Pnz6t+/vypUqKAyZcqoe/fu2rt3r/W+hw8f1u23364KFSqobNmyuuaaa/TTTz9Jsh3ivXLlSj388MOKj4+39ticMGGCpJxDvGNiYtS7d2+VK1dOwcHBuvfee3Xy5Enr/gkTJqhFixb64osvVKtWLYWEhOi+++5TYmJivsf53Xff6ZprrlFAQIBq1aqlyZMn2+yvVauWXnvtNT3yyCMqX768atasqU8//TTfOhMTE9WvXz+VLVtWEREReuedd9SpUyc988wz1jIpKSkaMWKEqlevrrJly6pt27ZauXKldX9mz9JffvlFjRs3Vrly5dStWzedOHHCWsZisWjixImqUaOGAgIC1KJFCy1evNi6/9ChQzKZTJozZ446dOigoKAgXXvttdqzZ4/Wr1+vNm3aqFy5curevbtOnz5tcwzTpk1T48aNFRgYqEaNGuk///lPvscMAADg6UhQAgAAlHBBQUFKTU2VdHkI+IYNG/Tjjz9q7dq1MgxDPXr0UFpamiRp8ODBSklJ0erVq7V161a98cYbKleuXI46b7jhBr377rsKDg7WiRMndOLECY0YMSJHOYvFot69e+vcuXNatWqVli5dqgMHDqhPnz425fbv36/58+dr4cKFWrhwoVatWqXXX389z2PauHGj7r33Xt13333aunWrJkyYoLFjx2rmzJk25SZPnqw2bdro77//1pNPPqknnnhCu3fvzrPeYcOG6Y8//tCPP/6opUuX6rffftOmTZtsygwZMkRr167V7NmztWXLFt1zzz3q1q2bTaL3woULevvtt/XFF19o9erViomJsTk/7733niZPnqy3335bW7ZsUdeuXdWrVy+bOiRp/PjxevHFF7Vp0yb5+vrq/vvv13PPPaf33ntPv/32m/bt26dx48ZZy3/55ZcaN26cXn31Ve3cuVOvvfaaxo4dq1mzZuV5zAAAAB7PAAAAQIkxYMAAo3fv3oZhGIbFYjGWLl1qBAQEGCNGjDD27NljSDL++OMPa/kzZ84YQUFBxpw5cwzDMIzo6GhjwoQJuda9YsUKQ5Jx/vx5wzAMY8aMGUZISEiOclFRUcY777xjGIZhLFmyxPDx8TFiYmKs+7dv325IMv766y/DMAxj/PjxRpkyZYyEhARrmZEjRxpt27bN8zjvv/9+45ZbbrHZNnLkSKNJkyY2cTzwwAPW2xaLxahataoxderUXOtMSEgw/Pz8jLlz51q3xcXFGWXKlDGGDh1qGIZhHD582PDx8TGOHTtmc9/OnTsbo0ePNgzj8nmRZOzbt8+6/6OPPjLCwsKst6tVq2a8+uqrNnVce+21xpNPPmkYhmEcPHjQkGRMmzbNuv/rr782JBnLli2zbps0aZLRsGFD6+26desaX331lU29L7/8stGuXbtcjxkAAKAkYA5KAACAEmbhwoUqV66c0tLSZLFYdP/992vChAlatmyZfH191bZtW2vZSpUqqWHDhtq5c6ck6emnn9YTTzyhJUuWqEuXLrr77rvVrFmzQseyc+dORUZGKjIy0rqtSZMmCg0N1c6dO3XttddKujwcu3z58tYyEREROnXqVL719u7d22Zb+/bt9e677yojI0M+Pj6SZBO7yWRSeHh4nvUeOHBAaWlpuu6666zbQkJC1LBhQ+vtrVu3KiMjQw0aNLC5b0pKiipVqmS9XaZMGdWtWzfX40lISNDx48fVvn37HPH/888/Ntuyxh8WFiZJio6OttmWWW9ycrL279+vgQMHatCgQdYy6enp1oWNAAAASiISlAAAACXMzTffrKlTp8rf31/VqlWTr6/9TbpHH31UXbt21aJFi7RkyRJNmjRJkydP1lNPPeXCiCU/Pz+b2yaTSRaLxePqTUpKko+PjzZu3GhNgmbKOhQ+t8c1DMPhx8taj8lkynVb5vEkJSVJkj777DObJLSkHLECAACUJMxBCQAAUMKULVtW9erVU82aNW2Sk40bN1Z6errWrVtn3Xb27Fnt3r1bTZo0sW6LjIzU448/rnnz5mn48OH67LPPcn0cf39/ZWRk5BtL48aNdeTIER05csS6bceOHYqLi7N5TEc1btxYf/zxh822P/74Qw0aNCh0Mq5OnTry8/PT+vXrrdvi4+O1Z88e6+2WLVsqIyNDp06dUr169Wx+7FnhXJKCg4NVrVq1XOMvyjkJCwtTtWrVdODAgRyx1a5du9D1AgAAuBs9KAEAAEqJ+vXrq3fv3ho0aJA++eQTlS9fXqNGjVL16tWtw6WfeeYZde/eXQ0aNND58+e1YsUKNW7cONf6atWqpaSkJC1btkzNmzdXmTJlVKZMGZsyXbp0UXR0tPr166d3331X6enpevLJJ9WxY0e1adOm0McyfPhwXXvttXr55ZfVp08frV27Vh9++GGRVqwuX768BgwYoJEjR6pixYqqWrWqxo8fL7PZbO292KBBA/Xr10/9+/fX5MmT1bJlS50+fVrLli1Ts2bN1LNnT7sea+TIkRo/frzq1q2rFi1aaMaMGdq8ebO+/PLLQscvSS+99JKefvpphYSEqFu3bkpJSdGGDRt0/vx5DRs2rEh1AwAAuAs9KAEAAEqRGTNmqHXr1rrtttvUrl07GYahn376yTpsOCMjQ4MHD1bjxo3VrVs3NWjQIM+k3w033KDHH39cffr0UZUqVfTmm2/mKGMymfTDDz+oQoUKuummm9SlSxfVqVNH33zzTZGOo1WrVpozZ45mz56tpk2baty4cZo4caIeeuihItU7ZcoUtWvXTrfddpu6dOmi9u3bq3HjxgoMDLSWmTFjhvr376/hw4erYcOGuuOOO7R+/XrVrFnT7sd5+umnNWzYMA0fPlzR0dFavHixfvzxR9WvX79I8T/66KOaNm2aZsyYoejoaHXs2FEzZ86kByUAACjRTEZhJssBAAAASoHk5GRVr15dkydP1sCBA90dDgAAgFdiiDcAAAC8xt9//61du3bpuuuuU3x8vCZOnChJOVYMBwAAQPEhQQkAAACv8vbbb2v37t3y9/dX69at9dtvv6ly5cruDgsAAMBrMcQbAAAAAAAAgNuwSA4A/H87diwAAAAAMMjfehh7CiMAAABgIygBAAAAgI2gBAAAAAA2ghIAAAAA2AhKAAAAAGAjKAEAAACAjaAEAAAAADaCEgAAAADYBPvYPampR0n1AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAAGzCAYAAAAsf/kbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJyklEQVR4nOzdd3xT9f7H8Xe6gdKW2RYopUzZIChTxAsKuECviogXVMQFCpehojLEq4j+RJw4EMHJFUVQ9CLIFMGBiOxdKKNld0NXzu8PbGho2iZt0iTN6/l49AE555vv+ZyTk+Sbz/me79dkGIYhAAAAAAAAAHADP3cHAAAAAAAAAMB3kaAEAAAAAAAA4DYkKAEAAAAAAAC4DQlKAAAAAAAAAG5DghIAAAAAAACA25CgBAAAAAAAAOA2JCgBAAAAAAAAuA0JSgAAAAAAAABuQ4ISAAAAAAAAgNuQoAQAAAAAAADgNiQoAQAAAAAAALgNCUoAAOB0hmHIMAx3hwEAAADAC5CgBAAATvPBBx+oVatWCgkJUUhIiFq1aqXZs2e7OywAAAAAHizA3QEAAICKYdKkSZoxY4YeffRRdenSRZK0YcMG/fvf/1ZCQoKmTp3q5ggBAAAAeCKTwf1XAADACWrVqqXXX39dgwYNslr++eef69FHH9WpU6fcFBkAAAAAT8Yt3gAAwClycnLUsWPHQss7dOig3NxcN0QEAAAAwBuQoAQAAE7xr3/9S7NmzSq0/L333tPgwYPdEBEAAAAAb8AYlAAAoNTGjBlj+b/JZNLs2bO1bNkyde7cWZL066+/KiEhQUOGDHFXiAAAAAA8HGNQAgCAUrvmmmvsKmcymbRy5UoXRwMAAADAG5GgBAAAAAAAAOA23OINAAAAAACAMjlx4oR2794tSWrWrJlq167t5ojcJyUlRUlJSZKkqKgohYeHuzkiz0eCEgAAOM3GjRv1xRdfKCEhQdnZ2VbrFi5c6KaoAAAAHHPkyBF98803Nts0M2bMcFNU7lHSsUhLS9Mjjzyi+fPnKy8vT5Lk7++vgQMH6q233vKp5Nzs2bM1Y8YMS6I2X7NmzTR27FgNGzbMTZF5PhKUAADAKebPn68hQ4aoT58+WrZsma677jrt2bNHx48f1y233OLu8AAAAOyyYsUK3XzzzWrYsKF27dqlVq1a6eDBgzIMQ5dffrm7wytX9hyL+++/X3/++aeWLFmiLl26SJI2bNigUaNG6cEHH9T8+fPduQvl5uWXX9aUKVP02GOPqU+fPoqMjJQkHT9+XMuWLdOoUaN09uxZjRs3zs2ReibGoAQAAE7Rpk0bPfjggxoxYoSqVq2qv/76S3FxcXrwwQcVHR2tZ5991t0hAgAAlOjKK69Uv3799Oyzz1raNLVr19bgwYPVt29fPfzww+4OsdzYcyyqVKmiH374Qd27d7d67k8//aS+ffsqIyPDTdGXr9jYWL388su64447bK7/73//q/HjxyshIaGcI/MOfu4OAAAAVAz79+/XDTfcIEkKCgpSRkaGTCaT/v3vf+u9995zc3QAAAD22blzp4YMGSJJCggI0Llz5xQaGqqpU6dq+vTpbo6ufNlzLGrUqGHzNu7w8HBVq1atXON1pxMnTqh169ZFrm/durVOnTpVjhF5FxKUAADAKapVq6a0tDRJUt26dbVt2zZJUnJysjIzM90ZGgAAgN2qVKliGWsxOjpa+/fvt6zztQSTPcfimWee0ZgxYyyTwkhSUlKSxo8fr4kTJ5ZvwG50xRVX6MUXX1Rubm6hdXl5eZo+fbquuOIKN0TmHRiDEgAAOEWPHj20fPlytW7dWrfffrtGjRqllStXavny5erVq5e7wwMAALBL586dtW7dOjVv3lzXX3+9xo4dq61bt2rhwoXq3Lmzu8MrV0Udi+eff14BAQGWcSj37t2r+vXrq379+pKkhIQEBQcH6+TJk3rwwQfduQvl5s0331SfPn0UFRWlHj16WI1BuXbtWgUFBWnZsmVujtJzMQYlAABwijNnzuj8+fOqU6eOzGazXnrpJa1fv15NmjTRM88841O3+AAAAO914MABpaenq02bNsrIyNDYsWMtbZoZM2YoNjbW3SGWm6KORW5urvr06aOIiIgS65g8ebLrA/UQaWlp+uSTT/TLL79YepRGRUWpS5cuuuuuuxQWFubmCD0XCUoAAAAAAAAAbsMYlAAAwKVyc3OZrRAAAHit48ePV8i2TG5urpYvX64PPvhAP/74o/Ly8izr7Blr05HxOPPy8nTgwAGZzWZJUlZWlr744gvNnz9fx48fdzx4L5STk1MhzyNnIUEJAABcavv27YqLi3N3GAAAAMVKS0vT3XffrdjYWA0dOlTZ2dkaMWKEoqOjFRcXp6uvvlqpqanuDrPUHn30US1ZskSSdOTIEbVu3Vr9+vXT008/rb59+6p9+/Y6evSoJCkyMlK9evXSZ599pqysLJv1RUZG6h//+EexZSRpy5YtiomJUZMmTdS2bVsdPnxYHTt21H333afhw4erefPm+v33352/wx5mx44dtImLQYISAAAAAAD4vKeeekp//PGHxo0bp4SEBN1xxx1au3atfvrpJ61atUqnTp3S9OnT3R1mqS1YsEANGjSQJI0dO1b16tVTUlKSkpKSdOLECcXGxmr06NGSJMMwFBQUpHvvvVfR0dF69NFHtXnzZqv6DMNQcHBwsWUk6fHHH1e3bt30119/qVevXurTp4+aN2+us2fP6uzZs7rhhhv01FNPuXbn4fEYgxIAAJRJ/uyNRTl37pz27NljddsQAACAp6lfv77mzZuna665RseOHVO9evX0zTff6MYbb5Qkfffddxo7dqx27drl5khLp1KlSpZefDExMfrqq6905ZVXWtZv27ZN11xzjU6ePCk/Pz8lJSXJz89P8+bN05w5c7Rr1y61a9dO999/vwYPHqyIiIgSy4SFhal69er6+eef1bx5c507d05Vq1bV+vXrLdvevn27rr76aoduGfdEtInLJsDdAQAAAO+2Y8cO3XnnnUXespKYmKg9e/aUc1QAAACOOXHihBo3bixJqlOnjipVqqSmTZta1rdq1UqHDx92V3hl1rRpU/3222+Ki4tT1apVC92unpaWZhkjMl/NmjU1duxYjR07Vhs2bNDs2bP1xBNPaNy4ccrv71ZcmX/+858yDEMBARfST5f+K0n+/v6FtuuNaBOXDT0oAQBAmXTs2FHDhg3Tww8/bHP95s2b1aFDB64WAwAAj1a3bl19++23lp5wd911l2bOnKnatWtLutDT76qrrtKZM2fcGWapzZ07VxMnTtTHH3+sw4cPa9q0aXrjjTfUvHlz7d69W6NGjVKnTp30/vvvy9/fX4mJiZZ9LygjI0Pz58/X/fffr+PHjxdbZs6cOapUqZIaNGigZ599Vh988IE+/vhjXXXVVZozZ44kacSIEdq6davWrl3r8mPgSrSJy4YelAAAoEy6deum3bt3F7m+atWq6tGjRzlGBAAA4Lg2bdro999/tyQoP/vsM6v1v//+u5o3b+6O0Jzinnvu0ZkzZ3TDDTfIMAzl5eXpuuuus6y/+eab9eqrr0qSiuvLVqVKFQ0bNkzDhw8vscywYcP0+++/q1+/fvrwww9Vo0YNrVq1SsOGDVN0dLT8/Px09uxZffvtt87bUTehTVw29KAEAAAAAAA+78yZM/Lz81NERITN9f/73/9UqVIl9ezZs1zjcrbk5GQtX75cBw4ckNlsVnR0tLp166YmTZpYysybN0933nmngoODi6zHnjL5MjIytGvXLjVr1kyhoaE6f/68Pv30U507d07XXnutmjVr5pR9g/ciQQkAAAAAAADAbfzcHQAAAPBuQ4YMUVpamuXxX3/9pZycHDdGBAAA4LiK3qZxZP/sKWtvfRX9uObzlf10FXpQAgCAMrl0EPWwsDBt3rxZDRs2dHNkAAAA9qvobRpH9s+esvbWV9GPaz5f2U9XoQclAAAok0uvdXLtEwAAeKOK3qZxZP/sKWtvfRX9uObzlf10FRKUAAAAAAAAANwmwN0BAAAA77djxw4lJSVJunC1eNeuXUpPT7cq06ZNG3eEBgAAYLeK3qZxZP/sKWtPGUe36818ZT9dgTEoAQBAmfj5+clkMtm8jSV/uclkUl5enhuiAwAAsE9Fb9M4sn/2lDUMQ35+fiXWV/DfkrbrzSr6+eNq9KAEAABlEh8f7+4QAAAAyqyit2kc2T97yh45ckT16tUrS0gVSkU/f1yNHpQAAAAAAAAA3IZJcgAAgEstXLiQsXYAAIDXq+htGkf2z56y9tZX0Y9rPl/Zz9IiQQkAAMrs3Xff1W233aa77rpLv/76qyRp5cqVat++vf71r3+pW7dubo4QAACgZBW9TePI/tlT1t76Kvpxzecr++kSBgAAQBlMmzbNCAwMNDp06GBUqVLFqFy5svH8888bUVFRxrRp04wzZ864O0QAAIASVfQ2jSP7Z09Ze+ur6Mc1n6/sp6swSQ4AACiTDz/8UO+//76GDh2qn376SVdffbXWr1+vffv2qUqVKu4ODwAAwC4VvU3jyP7ZU9be+ir6cc3nK/vpKkySAwAAyqRSpUras2ePYmJiJEnBwcFav369OnTo4ObIAAAA7FfR2zSO7J89Ze2tr6If13y+sp+uwhiUAACgTLKyshQSEmJ5HBQUpOrVq7sxIgAAAMdV9DaNI/tnT1l766voxzWfr+ynq3CLNwAAKLOJEyeqcuXKkqTs7Gz95z//UXh4uFWZGTNmuCM0AAAAu1X0No0j+1dSWcMw7KrP0e16M1/ZT1fgFm8AAFAmPXv2lMlkKraMyWTSypUryykiAAAAx1X0No0j+2dP2c2bN6tdu3Yl1mc2myv0cc1X0c8fVyNBCQAAnOrUqVOSpJo1a7o5EgAAgNKr6G0aR/bPnrL21lfRj2s+X9lPZ2EMSgAAUGbJyckaMWKEatasqcjISEVGRqpmzZoaOXKkkpOT3R0eAACAXTy5TXPffffZ9VccR/bPnrL21ufJx9WZfGU/XYEelAAAoEzOnDmjLl266OjRoxo8eLCaN28uSdqxY4c+++wzxcTEaP369apWrZqbIwUAACiap7dp/Pz8FBsbq/bt26u4VM7XX39tc7kj+2dP2e+++079+vUrsT7DMDz6uDqLp58/no4EJQAAKJPRo0drxYoV+vHHHxUZGWm1LikpSdddd5169eqlV1991U0RAgBQMWzYsEGnT5/WjTfeaFn20UcfafLkycrIyNCAAQP0xhtvKDg42I1Rei9Pb9OMGDFCn3/+uWJjY3Xvvffq7rvvdmiWaEf2z56y/v7+ys3NLbE+wzDcelz9/PzsGhsyNze3TNvx9PPH05GgBAAAZdKgQQO9++676tOnj831S5cu1UMPPaSDBw+Wb2AAAFQw/fr1U8+ePfXEE09IkrZu3arLL79c99xzj5o3b66XX35ZDz74oKZMmeLeQL2UK9o0119/vT7//HPLTM4vvviiHnroIUVEREiSTp8+rauuuko7duywq76srCwtXLhQc+bM0fr163XDDTdo2LBhuu6660pMwjmyf/aUvfHGG/Xdd9+VWJ8kt7YVFy9eXOS6DRs26PXXX5fZbNb58+fLtB3axGVDghIAAJRJcHCw9u/fr3r16tlcf+TIETVu3LjMjT4AAHxddHS0vv32W3Xs2FGS9PTTT2vNmjVat26dJGnBggWaPHmy3ckuWHNFm8bf31+JiYmqXbu2JCksLEybN29Ww4YNJUnHjx9XnTp1lJeX53C8hw4d0ty5c/XRRx8pNzdX27dvV2hoaJHlHdk/e8rGxMTo8OHDJdZnGIbHtRV3796tJ598Ut9++60GDx6sqVOnKjY2tkx10iYuGybJAQAAZVKzZs1irwTHx8c7dPsRAACw7ezZs1a3jq5Zs0b9+vWzPL7iiit0+PBhd4RWIbiiTXNpnzBn9hHLv3XZMAy7EpyO7J89Zf38/Oyqz5PaiseOHdPw4cPVunVr5ebmavPmzZo3b16Zk5MSbeKyIkEJAADKpE+fPnr66aeVnZ1daF1WVpYmTpyovn37uiEyAAAqlsjISMXHx0uSsrOztWnTJnXu3NmyPi0tTYGBge4Kz+t5Q5smKytLn3/+ua699lo1bdpUW7du1ZtvvqmEhIRie09Kju2fPWUbNWpkV32ecFxTUlL0xBNPqHHjxtq+fbtWrFihb7/9Vq1atXLaNjxhP70Zt3gDAIAyOXLkiDp27Kjg4GCNGDFCl112mQzD0M6dO/X2228rKytLGzduVExMjLtDBQDAqz388MP666+/NH36dC1atEjz5s3TsWPHFBQUJEn69NNPNXPmTP3+++9ujtQ7uaJN4+/vr6SkJNWqVUuSVLVqVW3ZskVxcXGSHLvF+5FHHtH8+fMVExOj++67T4MHD1bNmjVdsn/2lP3222918803l1ifyWRya1vxpZde0vTp0xUVFaUXXnhB/fv3d8l2aBOXDQlKAABQZvHx8XrkkUe0bNkyy61LJpNJ1157rd588001btzYzRECAOD9Tp06pVtvvVXr1q1TaGio5s2bp1tuucWyvlevXurcubOef/55N0bp3ZzdpvHz81O/fv0sM6t/++23+sc//qEqVapIutCzbunSpXYlKP38/FS/fn21b9++2AlxFi5cWOQ6R/bPnrL21ufOtqKfn58qVaqk3r17y9/fv8hyxR03e9EmLj0SlAAAwGnOnj2rvXv3SpIaN27MODsAALhASkqKQkNDCyVbzpw5o9DQUEuPSpSes9o09957r13lPvzwwxLL3HPPPSXO1G1vXY7snz1l7a3PHW1FZx43e9EmdhwJSgAAAAAAAABuwyQ5AAAAAAAAANyGBCUAAAAAAAAAtyFBCQAAXCIrK0tTpkxRVlaWu0MBAKDC4vvWtVxxfJ1ZpzPqsrcOZ5Zz93lbntt39756C8agBAAALpGamqrw8HClpKQoLCzM3eEAAFAh8X3rWq44vs6s0xl12VuHM8u5+7wtz+27e1+9BT0oAQAAAAAAALgNCUoAAAAAAAAAbhPg7gA8UV5envbs2aPQ0FCZTCZ3hwMAgFdKS0uTJB09elSpqalujgYAgIqJ71vXcsXxdWadzqjL3jqcWc7d5215bt/d++pOhmEoPT1dTZs2lb+/f7FlGYPShp07d6pFixbuDgMAAAAAAADwajt27FDz5s2LLUMPShuio6MlXTiAVatWdXM05S83N1cJCQny8/NTQACnCAAAAAD3OJ9zXkdSjyimboyCA4PdHQ68UK45V9k52VKKFBQYVO6/cXNzc5Wdmy2FS0EBQQrwK7z9XHOuzIZZ0VWilXg00eW/xYt7X53PPq8jR44oJsKx95ytOktblz3HzJMVdc7l5ubKbDarfv36PpNrSUtLU4sWLSx5tuL4xhFxkJ/fhaE569at65MzLOXk5Cg7O1vBwcEKDAx0dzgAAAAAfFRmVqayTmepbt26qhxS2d3hwAvl5OUo/Vy6VEkKrRxa7r9xc3L+3n6EFBoSqkD/wtvPyctRVm6W6obWlZFnuPy3eHHvq8zzmcrKzlLdWo6952zVWdq67Dlmnqyocy4nJ0dZWReOka/kWvJvac/PsxWHSXIAAAAAAAAAuA0JSgAAAAAAAABuQ4ISAAAnSk9P16RJk3TllVeqUaNGuvnmm7V582bLesMw9PLLL6t9+/Zq1KiRBg4cqAMHDljVsX//ft17771q1aqVmjVrpgEDBujnn3+2KjNx4kT17dtXcXFxuvbaa+2Ob+7cubr66qvVqFEjXXXVVVqwYIHV+u+//179+vVT8+bN1bhxY1177bX68ssvrcq88sor6tGjhxo3bqwWLVpo4MCB2rRpk1WZTp06qW7dulZ/b775pt1xAgAAAPAdjEEJAIATjRs3Trt379brr7+uyMhILVy4UHfeeadWrVql6Ohovf3225ozZ45mzpypmJgYvfzyyxo8eLBWrVqlkJAQSdLQoUMVFxenL774QiEhIZo9e7aGDh2q9evXq3bt2pZt3Xnnndq0aZN27txpV2zz5s3TtGnT9NJLL6ldu3bavHmzxo8fr/DwcF133XWSpIiICD322GNq3LixAgMD9eOPP2rMmDGqWbOmevbsKUlq2LCh/vOf/yg2Nlbnz5/X+++/r7vuuks///yzatSoYXUsBg8ebHkcGhpa1sMLAAAAoAKiByUAAE5y7tw5ff/993r66afVuXNnxcXFaezYsWrQoIE++ugjGYah2bNna9SoUerTp49atGih1157TcePH9cPP/wgSTpz5ozi4+M1cuRItWjRQg0bNtRTTz2lc+fOadeuXZZtPffcc7rnnnsUGxtrd3xfffWV7r77bvXv31+xsbHq37+/Bg8erLfffttSpmvXrurXr5+aNGmiBg0a6P7771fz5s3122+/Wcrccsst6tGjh2JjY9WsWTNNnjxZaWlp2rFjh9X2QkNDVbt2bctf5cpMbgAAAACgMBKUAAA4SV5envLy8hQcHGy1PCQkRL///rsSEhJ04sQJde/e3bIuLCxM7du31x9//CFJqlatmho1aqQvv/xSmZmZys3N1SeffKKaNWuqTZs2ZYovOzvbZmybN29WTk5OofKGYeinn37S/v371blz5yLr/PTTTxUWFqaWLVtarXvrrbfUsmVLXXfddZo1a5Zyc3PLFD8AAACAiolbvAEAcJLQ0FB16NBBr732mpo0aaJatWpp0aJF+uOPP9SgQQOdOHFCklSrVi2r59WsWdOyzmQyaf78+Ro2bJiaNm0qPz8/1axZU59++qkiIiLKFN/VV1+tzz//XH379lXr1q21ZcsWff7558rJydGZM2cUGRkpSUpNTVWHDh2UnZ0tf39/vfDCC+rRo4dVXcuXL9cjjzyic+fOKTIyUp9//rmqV69uWX/fffepdevWioiI0MaNG/Xiiy/q+PHjmjJlSpn2AQAAAEDFQ4ISAAAnev311zV27Fh16NBB/v7+at26tQYMGKAtW7bY9XzDMPT000+rZs2a+vrrrxUSEqLPPvtMQ4cO1ffff29JIpakSZMmlv/feuutmj59ukaPHq2TJ0/qpptukmEYqlWrlm6//Xa9/fbb8vO7eFNFaGioli1bpoyMDK1bt07PPvus6tevr65du1rKdOvWTcuWLdOZM2f02Wef6aGHHtKSJUtUs2ZNSdKDDz5oKduiRQsFBQXpiSee0IQJEwr14gQAAADg20hQAgDgRA0aNNBXX32lzMxMpaWlKTIyUg899JDq169vmeDm5MmTVonGU6dOWW6PXrdunX788Uft2LFDVatWlSRNmzZNa9eu1YIFCzRy5Ei74li2bJnl//n1VKpUSTNmzND06dMtMXzyyScKDQ21mtzGz89PcXFxkqRWrVpp3759evPNN60SlJUrV1ZcXJzi4uLUoUMHdevWTZ9//rkeffRRm/G0b99eubm5Onz4sBo3bmzXPgAAAADwDYxBCQBAGZ3PMevn+BSt2Z+s1PMXxlmsXLmyIiMjdebsWa1ctVpx7a9SfE6YataqpXXr1lmem5aWpj///FMdOnSQdGGiHUlWPRrzH5vNZrtjyk8exsXFWXo15gsMDFSdOnXk7++vb775Rr179y60vYLMZrOys7OL3Z5hGMWW2b59u+V2dQAAAAAoiB6UAACU0es/HdGibaclSbHpO/VAl2g1atRIBw8e1BMTpyinah0tN7XXj98fVPUrB+j1119Xw4YNFRMTo5dfflmRkZHq06ePJKljx44KDw/X6NGjNXr0aMst3ocPH1avXr0s24yPj1dGRoZOnDih8+fPa9u2bZKkpk2bKigoyGac+/fv1+bNm9W+fXulpKTovffe065duzRz5kxLmTfeeENt27ZVbGyssrOztWLFCn311VeaNm2aJCkzM1OvvfaarrvuugsJ2DNnNHfuXCUlJenGG2+UJG3cuFF//vmnunbtqtDQUP3xxx+aMmWKbr311jKPowkAAACg4iFBCQBAGZ1IvzgD9qmzKXr66TeVmJioiIgINbnyGhmNb1VwUKCy8wyFXvlPXd+kih5//HGlpqbqiiuu0CeffKKQkBBJUvXq1fXpp59q+vTpuuOOO5Sbm6umTZtqzpw5VrNkjx8/Xhs2bLA8zk9w/vLLL4qJibEZp9ls1rvvvqv9+/crMDBQXbt21eLFi63KZ2ZmasKECUpKSlJISIgaNWqk119/Xf3795d0oSfn/v379cADD+jMmTOqVq2a2rZtq4ULF6pZs2aSpODgYC1evFgzZsxQdna2YmJiNHz4cD3wwANOOuIAAAAAKhKTYRiGu4PwNKmpqQoPD1dKSorCwsLcHU65y8nJUXx8vIKDgxUYGOjucADA4437Zr/WH0yVJDWoFqLP/tXcsm7+nyf0+k9HFVc9RPFnzqtmlUB9M6yVu0IFAMCrZGZlav/p/WoU20iVQyq7Oxx4oZy8HKWfS5eSpdDKoeX+Gzcn5+/tR0ihIaEK9C+8/Zy8HGXlZqleaD0dSTji8t/ixb2vMs9nav+B/WpUy7H3nK06S1uXPcfMkxV1zuXk5CgrK0txcXE+k2txJL/GGJQAADiRWdbX/cx/Xwc0mdwRDQAAAAB4PhKUAAA40aX3JeQ/9iNBCQAAAAA2uTVBuXbtWt10002qU6eOTCaTFi1aZLXeZDLZ/Hv55ZeLrHPKlCmFyl922WUu3hMAAC4olKD8+1+TyFACAAAAgC1uTVBmZGSobdu2euutt2yuT0xMtPqbM2eOTCaT/vnPfxZbb8uWLa2et27dOleEDwBAIWaDW7wBAAAAwBFuncW7X79+6tevX5Hro6KirB4vXrxY11xzjRo2bFhsvQEBAYWeCwBAebh05jlu8QYAAACA4nnNGJTHjx/Xd999p2HDhpVYdu/evapTp44aNmyowYMHKyEhodjyWVlZSk1NtfoDAKA0CvegvPCviS6UAAAAAGCT1yQo582bp6pVq+rWW28ttlynTp00d+5cLV26VLNmzVJ8fLyuuuoqpaWlFfmcadOmKTw83PIXExPj7PABAD6i8CQ5FxZ4zRcuAAAAAJQzr/m9NGfOHA0ePFghISHFluvXr59uv/12tWnTRn369NH333+v5ORkffHFF0U+Z8KECUpJSbH8HT582NnhAwAqsII5SfMlCcrCPSgvvQkcAAAAAHybW8egtNdPP/2k3bt367///a/Dz42IiFDTpk21b9++IssEBwcrODi4LCECACDpYo9Jy+O//2UMSgAAAACwzSt6UH7wwQfq0KGD2rZt6/Bz09PTtX//fkVHR7sgMgAArBWeJIdZvAEAAACgOG5NUKanp2vz5s3avHmzJCk+Pl6bN2+2mtQmNTVVCxYs0P3332+zjl69eunNN9+0PB43bpzWrFmjgwcPav369brlllvk7++vQYMGuXRfAACQir7F248MJQAAAADY5NZbvDdu3KhrrrnG8njMmDGSpKFDh2ru3LmSpPnz58swjCITjPv379epU6csj48cOaJBgwbp9OnTqlWrlrp3765ffvlFtWrVct2OAADwt0K3eFvGoHRDMAAAAADgBdyaoOzZs2ehH3KXeuCBB/TAAw8Uuf7gwYNWj+fPn++M0AAAKJX0rDw9tGCP5XFiarYkxqAEAAAAgKJ4xSQ5AAB4izxD2pKYUWh57dAgN0QDAAAAAJ6PBCUAAE4yuENttYysUmh55SA/hYUE6PudZ9wQFQAAAAB4NhKUAAA4SYNqIerZOMLmur0nM8s3GAAAAADwEm6dxRsAgAqh+OGUrYs6UBYAAAAAfAEJSgAAAAAAAABuQ4ISAAAnMTFTNwAAAAA4jAQlAADlwET2EgAAAABsIkEJAAAAAAAAwG1IUAIAAAAAAABwGxKUAAAAAAAAANyGBCUAAAAAAAAAtyFBCQAAAAAAAMBtSFACAAAAAAAAcBsSlAAAlJEhw4GyAAAAAICCSFACAOAkJncHAAAAAABeiAQlAADlgOQlAAAAANhGghIAAAAAAACA25CgBAAAAAAAAOA2JCgBAAAAAAAAuA0JSgAAAAAAAABuQ4ISAAAAAAAAgNuQoAQAAAAAAADgNiQoAQAAAAAAALgNCUoAAMrIMFxTFgAAAAB8AQlKAACcxuTuAAAAAADA65CgBACgPJC7BAAAAACbSFACAAAAAAAAcBsSlAAAAAAAAADcxq0JyrVr1+qmm25SnTp1ZDKZtGjRIqv199xzj0wmk9Vf3759S6z3rbfeUoMGDRQSEqJOnTrpt99+c9EeAAAAAAAAACgLtyYoMzIy1LZtW7311ltFlunbt68SExMtf59//nmxdf73v//VmDFjNHnyZG3atElt27ZVnz59dOLECWeHDwAAAAAAAKCMAty58X79+qlfv37FlgkODlZUVJTddc6YMUPDhw/XvffeK0l655139N1332nOnDl68sknbT4nKytLWVlZlsepqal2bw8AAAAAAABA6Xn8GJSrV69W7dq11axZMz388MM6ffp0kWWzs7P1xx9/qHfv3pZlfn5+6t27tzZs2FDk86ZNm6bw8HDLX0xMjFP3AQAAAAAAAIBtHp2g7Nu3rz766COtWLFC06dP15o1a9SvXz/l5eXZLH/q1Cnl5eUpMjLSanlkZKSSkpKK3M6ECROUkpJi+Tt8+LBT9wMAULEZLioLAAAAAL7Arbd4l+TOO++0/L9169Zq06aNGjVqpNWrV6tXr15O205wcLCCg4OdVh8AwDeZTO6OAAAAAAC8j0f3oLxUw4YNVbNmTe3bt8/m+po1a8rf31/Hjx+3Wn78+HGHxrEEAMDZyF0CAAAAgG1elaA8cuSITp8+rejoaJvrg4KC1KFDB61YscKyzGw2a8WKFerSpUt5hQkAAAAAAADATm5NUKanp2vz5s3avHmzJCk+Pl6bN29WQkKC0tPTNX78eP3yyy86ePCgVqxYof79+6tx48bq06ePpY5evXrpzTfftDweM2aM3n//fc2bN087d+7Uww8/rIyMDMus3gAAAAAAAAA8h1vHoNy4caOuueYay+MxY8ZIkoYOHapZs2Zpy5YtmjdvnpKTk1WnTh1dd911eu6556zGi9y/f79OnTpleTxw4ECdPHlSkyZNUlJSktq1a6elS5cWmjgHAAAAAAAAgPu5NUHZs2dPGUbR85n+8MMPJdZx8ODBQstGjhypkSNHliU0AAAAAAAAAOXA4Vu8N23apK1bt1oeL168WAMGDNBTTz2l7OxspwYHAAAAAAAAoGJzOEH54IMPas+ePZKkAwcO6M4771TlypW1YMECPf74404PEAAAAAAAAEDF5XCCcs+ePWrXrp0kacGCBerRo4c+++wzzZ07V1999ZWz4wMAAAAAAABQgTmcoDQMQ2azWZL0448/6vrrr5ckxcTEWE1WAwCAryhmOGUbhV0WBgAAAAB4JYcTlB07dtR//vMfffzxx1qzZo1uuOEGSVJ8fDwzZQMAfJrJ3QEAAAAAgBdyOEE5c+ZMbdq0SSNHjtTTTz+txo0bS5K+/PJLde3a1ekBAgBQEZC8BAAAAADbAhx9Qps2baxm8c738ssvy9/f3ylBAQAAAAAAAPANDveglKTk5GTNnj1bEyZM0JkzZyRJO3bs0IkTJ5waHAAAAAAAAICKzeEelFu2bFGvXr0UERGhgwcPavjw4apevboWLlyohIQEffTRR66IEwAAAAAAAEAF5HAPyjFjxujee+/V3r17FRISYll+/fXXa+3atU4NDgAAAAAAAEDF5nCC8vfff9eDDz5YaHndunWVlJTklKAAAAAAAAAA+AaHE5TBwcFKTU0ttHzPnj2qVauWU4ICAAAAAAAA4BscTlDefPPNmjp1qnJyciRJJpNJCQkJeuKJJ/TPf/7T6QECAAAAAAAAqLgcTlC+8sorSk9PV+3atXXu3DldffXVaty4sapWrarnn3/eFTECAFBhGDLcHQIAAAAAeBSHZ/EODw/X8uXLtW7dOm3ZskXp6em6/PLL1bt3b1fEBwCA1zCZ3B0BAAAAAHgfhxOU+bp3767u3bs7MxYAACosE9lLAAAAALDJrgTl66+/bneFjz32WKmDAQAAAAAAAOBb7EpQvvrqq3ZVZjKZSFACAAAAAAAAsJtdCcr4+HhXxwEAAAAAAADABzk8i3dBhmHIMJiNFAAAAAAAAEDplCpB+cEHH6hVq1YKCQlRSEiIWrVqpdmzZzs7NgAAAAAAAAAVnMOzeE+aNEkzZszQo48+qi5dukiSNmzYoH//+99KSEjQ1KlTnR4kAAAAAAAAgIrJ4QTlrFmz9P7772vQoEGWZTfffLPatGmjRx99lAQlAMDnGLJ/uBMGRgEAAAAAaw7f4p2Tk6OOHTsWWt6hQwfl5uY6JSgAAAAAAAAAvsHhBOW//vUvzZo1q9Dy9957T4MHD3ZKUAAAAAAAAAB8g8O3eEsXJslZtmyZOnfuLEn69ddflZCQoCFDhmjMmDGWcjNmzHBOlAAAAAAAAAAqJIcTlNu2bdPll18uSdq/f78kqWbNmqpZs6a2bdtmKWcymZwUIgAAAAAAAICKyuEE5apVq1wRBwAAAAAAAAAf5PAYlM60du1a3XTTTapTp45MJpMWLVpkWZeTk6MnnnhCrVu3VpUqVVSnTh0NGTJEx44dK7bOKVOmyGQyWf1ddtllLt4TAAAAAAAAAKXhcA/K8+fP64033tCqVat04sQJmc1mq/WbNm2yu66MjAy1bdtW9913n2699VardZmZmdq0aZMmTpyotm3b6uzZsxo1apRuvvlmbdy4sdh6W7ZsqR9//NHyOCCgVENtAgAAAAAAAHAxhzN3w4YN07Jly3TbbbfpyiuvLNNYk/369VO/fv1srgsPD9fy5cutlr355pu68sorlZCQoPr16xdZb0BAgKKiouyOIysrS1lZWZbHqampdj8XAAAAAAAAQOk5nKBcsmSJvv/+e3Xr1s0V8RQrJSVFJpNJERERxZbbu3ev6tSpo5CQEHXp0kXTpk0rNqE5bdo0Pfvss06OFgAAAAAAAEBJHB6Dsm7duqpataorYinW+fPn9cQTT2jQoEEKCwsrslynTp00d+5cLV26VLNmzVJ8fLyuuuoqpaWlFfmcCRMmKCUlxfJ3+PBhV+wCAKCCMgzXlAUAAAAAX+BwD8pXXnlFTzzxhN555x3Fxsa6IqZCcnJydMcdd8gwDM2aNavYsgVvGW/Tpo06deqk2NhYffHFFxo2bJjN5wQHBys4ONipMQMAfE9Zhj0BAAAAAF/lcIKyY8eOOn/+vBo2bKjKlSsrMDDQav2ZM2ecFpx0MTl56NAhrVy5stjek7ZERESoadOm2rdvn1PjAgDAEeQuAQAAAMA2hxOUgwYN0tGjR/XCCy8oMjLSpb1F8pOTe/fu1apVq1SjRg2H60hPT9f+/fv1r3/9ywURAgAAAAAAACgLhxOU69ev14YNG9S2bdsybzw9Pd2qZ2N8fLw2b96s6tWrKzo6Wrfddps2bdqkJUuWKC8vT0lJSZKk6tWrKygoSJLUq1cv3XLLLRo5cqQkady4cbrpppsUGxurY8eOafLkyfL399egQYPKHC8AAAAAAAAA53I4QXnZZZfp3LlzTtn4xo0bdc0111gejxkzRpI0dOhQTZkyRd98840kqV27dlbPW7VqlXr27ClJ2r9/v06dOmVZd+TIEQ0aNEinT59WrVq11L17d/3yyy+qVauWU2IGAAAAAAAA4DwOJyhffPFFjR07Vs8//7xat25daAxKR8aI7Nmzp4xipjMtbl2+gwcPWj2eP3++3dsHAAAAAAAA4F4OJyj79u0r6cKt1QUZhiGTyaS8vDznRAYAAAAAAACgwnM4Qblq1SpXxAEAAAAAAADABzmcoLz66qtdEQcAAF6r5AFJAAAAAABFcThBmS8zM1MJCQnKzs62Wt6mTZsyBwUAAAAAAADANzicoDx58qTuvfde/e9//7O5njEoAQC+ylTKdQAAAADgy/wcfcLo0aOVnJysX3/9VZUqVdLSpUs1b948NWnSRN98840rYgQAAAAAAABQQTncg3LlypVavHixOnbsKD8/P8XGxuraa69VWFiYpk2bphtuuMEVcQIAAAAAAACogBzuQZmRkaHatWtLkqpVq6aTJ09Kklq3bq1NmzY5NzoAAAAAAAAAFZrDCcpmzZpp9+7dkqS2bdvq3Xff1dGjR/XOO+8oOjra6QECAAAAAAAAqLgcvsV71KhRSkxMlCRNnjxZffv21aeffqqgoCDNnTvX2fEBAAAAAAAAqMAcTlDefffdlv936NBBhw4d0q5du1S/fn3VrFnTqcEBAAAAAAAAqNgcvsX7UsHBwfLz85O/v78z4gEAAAAAAADgQxxOUI4ePVoffPCBJCkvL089evTQ5ZdfrpiYGK1evdrZ8QEA4PkMB4o6UBYAAAAAfIHDCcovv/xSbdu2lSR9++23OnjwoHbt2qV///vfevrpp50eIAAA3sLk7gAAAAAAwAs5nKA8deqUoqKiJEnff/+9br/9djVt2lT33Xeftm7d6vQAAQCoCExkLwEAAADAJocTlJGRkdqxY4fy8vK0dOlSXXvttZKkzMxMxqEEAAAAAAAA4BCHZ/G+9957dccddyg6Olomk0m9e/eWJP3666+67LLLnB4gAAAAAAAAgIrL4QTllClT1KpVKx0+fFi33367goODJUn+/v568sknnR4gAAAAAAAAgIrL4QSlJN12222Flg0dOrTMwQAAAAAAAADwLQ6PQQkAAAAAAAAAzkKCEgAAAAAAAIDbkKAEAAAAAAAA4DYkKAF4hTfffFN169bVpEmTCq0zDEN333236tatq6VLl1qt++mnn3TzzTeradOmateunZ5//nnl5uZa1u/bt0+33Xab2rZtq4YNG6pLly6aPn26cnJyyhzbbbfdprp161r9PfHEE1ZlLl1ft25dLV682KpMVlaWXnzxRV155ZWKi4tTp06dNH/+fLvjg+sZDpV1pDQAAAAAVHx2TZKTmppqd4VhYWGlDgYAbNm8ebM++eQTNW/e3Ob6999/XyaTqdDy7du3a8iQIXrsscf02muvKSkpSU8++aTy8vIsycTAwEDdfvvtatWqlcLDw7Vjxw6NHz9eZrNZEyZMKHNsgwcP1rhx4yyPK1WqVKjMjBkzdM0111geX/o5+tBDD+nkyZP6v//7P8XFxen48eMyDJJcnsjGaQgAAAAAKIFdCcqIiAibP/5tycvLK1NAAFBQRkaGRo4cqZdeekmvv/56ofXbtm3Tu+++q//9739q37691bpvvvlGzZs317///W9JUlxcnJ5++mk9/PDDGjNmjEJDQxUbG6vY2FjLc+rVq6f169frt99+K3NskhQSEqLatWsXW094eHiRZVatWqVffvlF69evV7Vq1SRJMTExJcYGz2MS2UsAAAAAsMWuW7xXrVqllStXauXKlZozZ45q166txx9/XF9//bW+/vprPf7444qMjNScOXNcHS8AH/PUU0+pV69e6tGjR6F1586d08iRI/XCCy/YTPBlZ2crODjYallISIjOnz+vLVu22NxefHy8Vq9erc6dO5cptnxff/21WrVqpX/84x+aNm2azp07V6jM008/rVatWumGG27Q/PnzrXpHLlu2TG3atNGsWbPUoUMHde/eXVOnTrVZDwAAAAAA3siuHpRXX3215f9Tp07VjBkzNGjQIMuym2++Wa1bt9Z7772noUOHOj9KAD5p8eLF2rZtm7777jub6ydPnqyOHTuqT58+Ntf37NlTs2fP1qJFi3TTTTfpxIkTmjlzpiTpxIkTVmVvvvlmbdu2TVlZWRo8eLDGjx9fptgkacCAAapXr54iIyO1c+dOPf/889q/f79mz55tKTNu3Dh1795dlSpV0po1a/TUU08pIyNDw4YNkyQlJCTo999/V3BwsGbPnq0zZ87oqaee0tmzZ/Xqq68WGyMAAAAAAN7ArgRlQRs2bNA777xTaHnHjh11//33OyUoADh69KgmTZqkzz//XCEhIYXWL1u2TD///LOWLVtWZB1XX321nnnmGT355JN67LHHFBQUpNGjR+vXX38tNGzFrFmzlJGRoR07dui5557TO++8o0ceeUS//vqr7r77bku56dOnq1OnTsXGlq/g85o3b67atWtr4MCBOnjwoBo0aCBJltvPJalVq1bKzMzUrFmzLAlKs9ksk8mkN9980zI25eTJk/XAAw/ohRdesDmmJQAAAAAA3sThWbxjYmL0/vvvF1o+e/Zsh8dFW7t2rW666SbVqVNHJpNJixYtslpvGIYmTZqk6OhoVapUSb1799bevXtLrPett95SgwYNFBISok6dOtk1lhwAz7J161adOnVKffv2Vf369VW/fn1t2LBBc+bMUf369bV27VodOnRIzZs3t6yXpOHDh+u2226z1PPggw9q586d+u2337R161ZLb8uC405KF2bTbtq0qQYMGKCnnnpKr7zyivLy8tSmTRstW7bM8nfdddeVGFtRY/FefvnlkqSDBw8Wud/t27dXYmKisrKyJEm1a9dWVFSU1cQ5TZo0kWEYSkxMdPzAAgAAAADgYRzuQfnqq6/qn//8p/73v/+pU6dOkqTffvtNe/fu1VdffeVQXRkZGWrbtq3uu+8+3XrrrYXW5088MW/ePMXFxWnixInq06ePduzYUWSvpf/+978aM2aM3nnnHXXq1EkzZ85Unz59tHv37hInqgDgObp3764VK1ZYLRszZowaNWqkESNGqHr16lY9FCWpV69emjJliq699lqr5SaTSVFRUZKkRYsWqU6dOmrdunWR2zabzcrNzZXZbFalSpUUFxfnUGz+/v42692+fbskFftZtH37dkVERFjGzrziiiu0ZMkSZWRkqEqVKpKkAwcOyM/PT9HR0UXWAwAAAACAt3A4QXn99ddrz549mjVrlnbt2iVJuummm/TQQw853IOyX79+6tevn811hmFo5syZeuaZZ9S/f39J0kcffaTIyEgtWrRId955p83nzZgxQ8OHD9e9994rSXrnnXf03Xffac6cOXryySdtPicrK8vSW0mSUlNTHdoPAM7zx+E0vbL6iM7nmuXvJ91zRZRuaFFDklS5cmVVq1ZNl112mSTbib66detaelNKF27d7tmzp/z8/PT999/rrbfe0jvvvGNJIi5cuFABAQFq3ry5goKC9Ndff+nFF1/UzTffrMDAQJsxhoaGWmLId2lsBw8e1Ndff61evXqpWrVq2rlzp6ZMmaLOnTurRYsWki7cpn7q1CldfvnlCg4O1tq1a/XGG2/ooYcestR7yy23aObMmfr3v/+tcePG6cyZM3ruued05513cns3AAAAAKBCcDhBKV24zfuFF15wdixW4uPjlZSUpN69e1uWhYeHq1OnTtqwYYPNBGV2drb++OMPTZgwwbLMz89PvXv31oYNG4rc1rRp0/Tss886dwcAlMqKvWd18Ox5y+MlO05bEpSlsXLlSr3++uvKzs5W8+bNNWfOHP3jH/+wrPf399fbb7+tAwcOyDAM1atXT/fcc4+GDx9epv0IDAzUunXrNHv2bJ07d07R0dG6/vrrNWrUKKsyc+fO1ZQpU2QYhho0aKDJkydr8ODBljJVqlTR/Pnz9cwzz6hfv36qVq2abrrpJj3++ONlig/OVWDidaeWBQAAAABfUKoE5U8//aR3331XBw4c0IIFC1S3bl19/PHHiouLU/fu3Z0SWFJSkiQpMjLSanlkZKRl3aVOnTqlvLw8m8/J7+1py4QJEzRmzBjL49TUVId7gwJwjvzcTf2IYCUkZ1mt+/LLL4t97tGjRwstW7BgQbHP6d+/v6WXdllcGlvdunVLHPbimmuu0TXXXFNi3Y0bN9b8+fPLFB8AAAAAAJ7K4UlyvvrqK/Xp00eVKlXSpk2bLLdGp6SkuLxXpasEBwcrLCzM6g+Ae4UEOvzxBAAAAAAAvJDDGYD//Oc/euedd/T+++9bjc/WrVs3bdq0yWmB5U9ocfz4cavlx48ft6y7VM2aNeXv7+/QcwB4Fm5/BQAAAADAtzicoNy9e7d69OhRaHl4eLiSk5OdEZMkKS4uTlFRUVYz5aampurXX39Vly5dbD4nKChIHTp0sHqO2WzWihUrinwOAM9GwhIAAAAAgIrN4QRlVFSU9u3bV2j5unXr1LBhQ4fqSk9P1+bNm7V582ZJFybG2bx5sxISEmQymTR69Gj95z//0TfffKOtW7dqyJAhqlOnjgYMGGCpo1evXnrzzTctj8eMGaP3339f8+bN086dO/Xwww8rIyPDMqs3AO9gcncAAAAAAACgXDg8Sc7w4cM1atQozZkzRyaTSceOHdOGDRs0btw4TZw40aG6Nm7caDVBRP5ENUOHDtXcuXP1+OOPKyMjQw888ICSk5PVvXt3LV26VCEhIZbn7N+/X6dOnbI8HjhwoE6ePKlJkyYpKSlJ7dq109KlSwtNnAPAM+V3mDSRoQQAAAAAwCc4nKB88sknZTab1atXL2VmZqpHjx4KDg7WuHHj9OijjzpUV8+ePWUUc/+myWTS1KlTNXXq1CLLHDx4sNCykSNHauTIkQ7FAgAAAAAAAKD8OZygzM3N1dNPP63x48dr3759Sk9PV4sWLRQaGqpTp06pZs2arogTgM+hCyUAAAAAAL7A4TEo77zzThmGoaCgILVo0UJXXnmlQkNDdfz4cfXs2dMFIQLwKUaxDwEAAAAAQAXjcIIyISFB999/v9WyxMRE9ezZU5dddpnTAgPg2xiDEt7EIJUOAAAAAKXmcILy+++/1/r16y0T2hw7dkw9e/ZU69at9cUXXzg9QAC+ifwkvJGJzDoAAAAAOMzhMShr1aqlZcuWqXv37pKkJUuW6PLLL9enn34qPz+H850AYIWeaKioyF0CAAAAgG0OJyglKSYmRsuXL9dVV12la6+9Vh9//DG9RgAAAAAAAAA4zK4EZbVq1WwmIDMzM/Xtt9+qRo0almVnzpxxXnQAfFb+J45Bh0oAAAAAACo0uxKUM2fOdHEYAAAAAAAAAHyRXQnKoUOHujoOAJCkiyNQMmoEAAAAAAA+weFZbTZt2qStW7daHi9evFgDBgzQU089pezsbKcGBwAAAAAAAKBiczhB+eCDD2rPnj2SpAMHDmjgwIGqXLmyFixYoMcff9zpAQLwTaa/u1AyqzcAAAAAABWbwwnKPXv2qF27dpKkBQsW6Oqrr9Znn32muXPn6quvvnJ2fAB8DJPiAAAAAADgWxxOUBqGIbPZLEn68ccfdf3110uSYmJidOrUKedGB8BnmRiDEhUUOXgAAAAAsOZwgrJjx476z3/+o48//lhr1qzRDTfcIEmKj49XZGSk0wME4JvIT8Ibcd4CAAAAgOMcTlDOnDlTmzZt0siRI/X000+rcePGkqQvv/xSXbt2dXqAAABUBCQvAQAAAMC2AEef0KZNG6tZvPO9/PLL8vf3d0pQAGDB/bAAAAAAAFRoDicoixISEuKsqgCAMSgBAAAAAPARDico8/Ly9Oqrr+qLL75QQkKCsrOzrdafOXPGacEB8D3M4g0AAAAAgG9xeAzKZ599VjNmzNDAgQOVkpKiMWPG6NZbb5Wfn5+mTJnighABAAAAAAAAVFQOJyg//fRTvf/++xo7dqwCAgI0aNAgzZ49W5MmTdIvv/ziihgB+CATU4oAAAAAAOATHE5QJiUlqXXr1pKk0NBQpaSkSJJuvPFGfffdd86NDoDPMS6ZFYc7vgEAAAAAqNgcTlDWq1dPiYmJkqRGjRpp2bJlkqTff/9dwcHBzo0OgM9ikhx4E0fGTmWcVQAAAACw5nCC8pZbbtGKFSskSY8++qgmTpyoJk2aaMiQIbrvvvucHiAA30R+EgAAAAAA3+DwLN4vvvii5f8DBw5U/fr1tWHDBjVp0kQ33XSTU4MD4HvoXQZvVlzPX3oFAwAAAIBtDicoL9WlSxd16dLFGbEAQCHkKwEAAAAAqNhKlaA8duyY1q1bpxMnTshsNlute+yxx5wSGAAAAAAAAICKz+EE5dy5c/Xggw8qKChINWrUkKnAPWsmk4kEJQDn4HZYAAAAAAB8gsOT5EycOFGTJk1SSkqKDh48qPj4eMvfgQMHnB5ggwYNZDKZCv2NGDHCZvm5c+cWKhsSEuL0uAC4Rv4t3eQnAQAAAADwDQ73oMzMzNSdd94pPz+Hc5ul8vvvvysvL8/yeNu2bbr22mt1++23F/mcsLAw7d692/LYxMwEAAAAAAAAgEdyOMs4bNgwLViwwBWx2FSrVi1FRUVZ/pYsWaJGjRrp6quvLvI5JpPJ6jmRkZHlFi8A58i/rsCs3gAAAAAAVGwO96CcNm2abrzxRi1dulStW7dWYGCg1foZM2Y4LbhLZWdn65NPPtGYMWOK7RWZnp6u2NhYmc1mXX755XrhhRfUsmXLIstnZWUpKyvL8jg1NdWpcQMAAAAAAACwrVQJyh9++EHNmjWTpEKT5LjSokWLlJycrHvuuafIMs2aNdOcOXPUpk0bpaSk6P/+7//UtWtXbd++XfXq1bP5nGnTpunZZ591UdQASsPEKJTwIo509DUcKg0AAAAAFZ/DCcpXXnlFc+bMKTZJ6CoffPCB+vXrpzp16hRZpkuXLurSpYvlcdeuXdW8eXO9++67eu6552w+Z8KECRozZozlcWpqqmJiYpwXOAAAAAAAAACbHE5QBgcHq1u3bq6IpViHDh3Sjz/+qIULFzr0vMDAQLVv31779u0rskxwcLCCg4PLGiIAJ2DMSVRc9AoGAAAAAFscniRn1KhReuONN1wRS7E+/PBD1a5dWzfccINDz8vLy9PWrVsVHR3tosgAuBYZSwAAAAAAKjKHe1D+9ttvWrlypZYsWaKWLVsWmiTH0R6O9jCbzfrwww81dOhQBQRYhzxkyBDVrVtX06ZNkyRNnTpVnTt3VuPGjZWcnKyXX35Zhw4d0v333+/0uAC4jouHtAUAAAAAAB7C4QRlRESEbr31VlfEUqQff/xRCQkJuu+++wqtS0hIkJ/fxY6gZ8+e1fDhw5WUlKRq1aqpQ4cOWr9+vVq0aFGeIQMoJSYQAQAAAADAtzicoPzwww9dEUexrrvuOhlFDEy3evVqq8evvvqqXn311XKICoAr0YGyfCWlZcvfJNUKDXJ3KAAAAF7PbBjaf+KccvIMNapdScEBDo+uBgA+xeEEJQCUh/xbvJk0x/V2JGXo/i/2SJI+u7u5GlQPcXNEAAAA3u3d1Yn6eP1xSVKrulX03j1N3RwRAHg2LuMA8CgkJMtfQnKW5f9HCvwfAAAApXPo1PmL/z99vpiSAACJBCUAoIA8MsSl4shh4xADAFDxmQt83/PdDwAlI0EJwCOZGIXSLWhAAwAAlF3BORTMNLAAoEQOJShzcnLUq1cv7d2711XxAMAF5CfLTcE2Mw3osinutDVxTgMA4DNoUQGAYxxKUAYGBmrLli2uigUACqFxV77MHHAAAIAys74A7L44AMBbOHyL9913360PPvjAFbEAANyMHpQAAABlZ+YWbwBwSICjT8jNzdWcOXP0448/qkOHDqpSpYrV+hkzZjgtOAC+i7th3YMr/AAAAGXHJDkA4BiHE5Tbtm3T5ZdfLknas2eP1ToTA2wBKKP8BhyfJuWJK/wAAADOxCQ5AOAYhxOUq1atckUcAAAPYDa7OwIAAADvRw9KAHCMw2NQ5tu3b59++OEHnTt3TpL1FSIAKKv8Dtl8tJQvrvADAACUHZPkAIBjHE5Qnj59Wr169VLTpk11/fXXKzExUZI0bNgwjR071ukBAvAttN/KX8FjTgMaAACg7C5tUtGhBwCK53CC8t///rcCAwOVkJCgypUrW5YPHDhQS5cudWpwAHwZo1C6Az0oS8cgtQ4AAAq4NCFJSwEAiufwGJTLli3TDz/8oHr16lktb9KkiQ4dOuS0wAD4Nubccg96UAIAAJTdpW0qsyH50b4FgCI53IMyIyPDqudkvjNnzig4ONgpQQHwXXTgcy96UJaNqZjMOr9JAADwHZe2qbjFGwCK53APyquuukofffSRnnvuOUkXfoyZzWa99NJLuuaaa5weIAC4QkZ2nh75cq/yDEPPXBury2oXvvDiKxjEHQAAwDGn03M056ckpZ3PlSRVCvLX1c3CtXJnsrJzzTp8JsuqfNr5PFWvUuo5agGgwnM4QfnSSy+pV69e2rhxo7Kzs/X4449r+/btOnPmjH7++WdXxAjAB7m6t9n7vyRq76lzkqSXVh7WnDubuXiL3oEelAAAACVbuvWMvt50ymrZt5tPF1n+1wNp6te6uqvDAgCv5fAlnFatWmnPnj3q3r27+vfvr4yMDN166636888/1ahRI1fECMCnlE+CbP/fyUlJOnT2fLlsEwAAABVDdu6FNmvrelV0RVxVq3U9moZr9HV1Ne2fcYqofKFPUB63qQBAsRzuQSlJ4eHhevrpp50dCwBYuHqSHCbhAQAAQFk1qhWi8MoB+j0+zbKsfWyo7riitiTp279Oa/2+VHeFBwBeo1QJyrNnz+qDDz7Qzp07JUktWrTQvffeq+rV6bIOwDny84dGOfWo9GUFjzB3eAMAAJSsYBvV75Ir3zYvhNPGAoBiOXyL99q1a9WgQQO9/vrrOnv2rM6ePavXX39dcXFxWrt2rStiBOBDyqvtZiowyiVJOQAAAJTWpQlJvwLtTG7aAQD7ONyDcsSIERo4cKBmzZolf39/SVJeXp4eeeQRjRgxQlu3bnV6kADgSvTSvIgjAQAAYD+TySQ/06XL3BMLAHgzh3tQ7tu3T2PHjrUkJyXJ399fY8aM0b59+5waHABfRsvOHehNWkoOHDeOMQAA3q/g97npkozkpbd8S1wEBoCSOJygvPzyyy1jTxa0c+dOtW3b1ilBAUB5Xnn2+YSRr++/E5FWBwDA9xTXg5LelABgH7tu8d6yZYvl/4899phGjRqlffv2qXPnzpKkX375RW+99ZZefPFF10QJwGdcmiz0+eRhOeN2d9fh9wkAABVToTEo+dIHAIfZlaBs166dTCaTjAKZgscff7xQubvuuksDBw50XnQA4CJczQYAAIAzmHTpLN42bvHmqjsAFMuuBGV8fLyr4wAAK+WZP/T19qJR5AMAAADYUrDJxCQ5AFB2diUoY2NjXR0HAEgiP+ZuHH8AAADHFH+LN9lKALCHXQnKSx07dkzr1q3TiRMnZDabrdY99thjTglMkqZMmaJnn33WalmzZs20a9euIp+zYMECTZw4UQcPHlSTJk00ffp0XX/99U6LCUD5yG/ouSphVrCpSFIOAAAApWEyFZ6129Yt3gCA4jmcoJw7d64efPBBBQUFqUaNGlYfviaTyakJSklq2bKlfvzxR8vjgICiQ16/fr0GDRqkadOm6cYbb9Rnn32mAQMGaNOmTWrVqpVT4wLg3Qq2G5kY5iKOBAAAgB0KNJrsmSSHNhYAFM/hBOXEiRM1adIkTZgwQX5+fq6IyUpAQICioqLsKvvaa6+pb9++Gj9+vCTpueee0/Lly/Xmm2/qnXfecWWYAJzEHeNB5pmltKxc+ZlMCgnwU3aeWYF+fgrwv9C6TDmXq7AQ/wp7NZxB2wEAAEqvcA9K2/8HABTN4QRlZmam7rzzznJJTkrS3r17VadOHYWEhKhLly6aNm2a6tevb7Pshg0bNGbMGKtlffr00aJFi4rdRlZWlrKysiyPU1NTyxw3gLIp78Zcn3e3Wj0O8jdp2YNt9NmfJ/TehkRd1TBc029sWL5BuQG5ytJx5LBxiAEAqDhMsjFJDuNOAoDDHM4yDhs2TAsWLHBFLIV06tRJc+fO1dKlSzVr1izFx8frqquuUlpams3ySUlJioyMtFoWGRmppKSkYrczbdo0hYeHW/5iYmKctg8ASsfVDbtqlQKLXZ+dZ2j/6fP6dvtpSdJPB1JcGg8AAAC8R8ELju3qh6p6lQD5m6TIsEC1qlelcHmuUAJAsRzuQZk/vuPSpUvVunVrBQZa/8ifMWOG04Lr16+f5f9t2rRRp06dFBsbqy+++ELDhg1z2nYmTJhg1fMyNTWVJCXgNtatN1c15mpXvfjZ1bNRuFbvt52ANNOahAOK6/nLLV4AAFRMjWpX0pLRrW2u4+sfAOxTqgTlDz/8oGbNmklSoUlyXCkiIkJNmzbVvn37bK6PiorS8ePHrZYdP368xDEsg4ODFRwc7LQ4AXi+gp9WxX52+UB+suAuMh4lAACA/bgACQDO4XCC8pVXXtGcOXN0zz33uCCc4qWnp2v//v3617/+ZXN9ly5dtGLFCo0ePdqybPny5erSpUs5RQjAWVzd2CuYlLQ10yIAAAAAACgfDo9BGRwcrG7durkilkLGjRunNWvW6ODBg1q/fr1uueUW+fv7a9CgQZKkIUOGaMKECZbyo0aN0tKlS/XKK69o165dmjJlijZu3KiRI0eWS7wAyq68OvAVzEn6F5Oh9LX+hL62vwAAAKVh710n9LAEAPs4nKAcNWqU3njjDVfEUsiRI0c0aNAgNWvWTHfccYdq1KihX375RbVq1ZIkJSQkKDEx0VK+a9eu+uyzz/Tee++pbdu2+vLLL7Vo0SK1atWqXOIF4J38i2k5+todz762vwAAAAAA93P4Fu/ffvtNK1eu1JIlS9SyZctCk+QsXLjQacHNnz+/2PWrV68utOz222/X7bff7rQYALiHqy82F8xJ+hVzqcYX8nW+sI8AAACuYV+rlYvAAFA8hxOUERERuvXWW10RCwCUm4JNST/uvQEAAIAD7M030soEAPs4nKD88MMPXREHAEgqv958BSfJ8S+25ehbl7t9a28BAAAAAJ7A4TEoAaA8lGenxuJ6UPrE7Ti+sI8u5sghNDjgAABUGPa2Wfn+B4DiOdyDMi4uzqrn0aUOHDhQpoAAQJJMf98Q46oEofUYlMzinc/eGSkBAAB8GU0mAHAuhxOUo0ePtnqck5OjP//8U0uXLtX48eOdFRcAH1Vut3gX+H9Rt3hzpRvOxShUAAD4HMY6BwC7OJygHDVqlM3lb731ljZu3FjmgACgPNg1SY7he1fHfWx3AQAAyoT0IwA4h9PGoOzXr5+++uorZ1UHwMe5/GJzwVu8i9iW2fCNhF3BffS1hCwAAEB5oI0FAMVzuAdlUb788ktVr17dWdUBqOB2Hs/Uyr1nCyUAD505Xy7bNxXIUBaVDP1oY5KSz+WWSzwAAADFWbLjtFLO5eq2trUUHMBcp47KyTPr602n1CG2qhrVrmRZvnTrGUWGBap9bFWXbJcelgBgH4cTlO3bt7eaJMcwDCUlJenkyZN6++23nRocgIrrpZUJ2n3yXJHrKwf5S3LdOJBBARc/x2pWCbRZZl18qku2DQAA4IgjyVl64ccESVJU1SD1alrNzRF5n+/+OqOZy46qfvVgzX+4hSRp7/FMTf3mkCRp/dPt3RkeAPg8hxOUAwYMsHrs5+enWrVqqWfPnrrsssucFReACi4zxyxJ6t00QrVDg6zWVa8coIY1KunLv066bPshBXoe3Nyyps7nmLVkxxk1qB6idfEplnUm+cZt3gAAwHNlZOdZ/p/fhoJjNh1KkyQlnMmyLEtMzi5zvcyBAwDO4XCCcvLkya6IA4CPyR+H57Y2tdSmTmih9X8eSSuXOLrHhSsk0E9DrojSkCuiJElTfjioZbvPSpKiw4J0LLXsjVdPZhQYFInxkQAA8DzmAt/PBl/WpWKykUksy5G097kkMAHAPgxeAsAn5TcqbTUaCy7y97Me0qKic9Ut9RWdQ6cGhxgA4CCri4lujMObkScEAM9mdw9KPz8/m1edCjKZTMrNZUIJACXLT4R54lVlvwJB+Rccc1c0bgEAQPkzk5UsOzc34nzgOjcAlIndCcqvv/66yHUbNmzQ66+/LrOZ8VAAOMnfiUF3tOUKJk39CvQzNypohtIo4v9wnCcm3AEA3q/gHQ58V5eOs7+i7b2zhqYBANjH7gRl//79Cy3bvXu3nnzySX377bcaPHiwpk6d6tTgAFRcF9t0ntdsK3BXd6EelEBpkbwEAJSWmauJZcb3MAB4tlKNQXns2DENHz5crVu3Vm5urjZv3qx58+YpNjbW2fEBgEvZaquaCiwtmKz0iR8EvrCPAAB4GW7xLjuTrVafE46rvYlPXkIAKJ5DCcqUlBQ98cQTaty4sbZv364VK1bo22+/VatWrVwVH4AKzm0Xs4tpJVrf4n3xgdkHBg+q+HsIAIAXYpKcMnN2D0peBwBwLrtv8X7ppZc0ffp0RUVF6fPPP7d5yzcAOIulDemG1l/BXpMF/19hG6IVdscAAKgYCvagtHfsQ3gIbi0HALvYnaB88sknValSJTVu3Fjz5s3TvHnzbJZbuHCh04IDUPF54nhApiJm8fYF/OYBAMDz8PVcdq5q0dm8ddwGg1cRAIpld4JyyJAhVj/aAaAsPLmJZt2DssAkOZ4ctJPQeAYAwPOYucW7zPgpCwCeze4E5dy5c10YBgC4h63GqlUPygIj9frCGJQAAMDzMIt32dnb09Fudr4O5EUBwD6lmsUbAMoqP9fnrkZbcW3KIntQui4ct7L6zVNRd9Ll7D9wHGIAgKMYd9IJ3Jwp5CUEgOKRoATgkfLzgu5oyxVsvxbsQUlmCQAAuIPVJDnuC8OruWwMSrpIAoBT2H2LN3zH/y3bq89+PaTJ18Woa8Pq7g7HLmlZuRr+xR71bBShh7rWcXc4sINlrEMPbNSZiuhBuTUxQ50bhLkhovLz380n1Sqqino1rebuULxScaezB57q8DEbD6fp+eWH9Pg/YtSlQbi7wwG8xroDKXp22UFl5xq6t1OU7rkiymq9YRgas3i/Nh5OU97fzZuJ19ZXv+Y1nBbD+oOpTqvLVxVs3131wp+W16q07H068zgAgH3oQYlC3v0pXmnZZn266ZS7Q7HbV1tOKeFslj7aeNzdoaACaBVVxXKb9+X1Qi3Ld57IdFNE5Wvi0oPuDgGACzz29T4dT8/R2G8OuDsUwKv8cihVGdlm5ZgNrd2fXGh9ZrZZvyakWSW8nlue4NQYcvLMlv/Tg7J06lYLtvy/rMlJAIDz0YMSRcrKNZdcyEPkmWlleB1LB0r3XFXOH8vJ1tb/0aSarqhfVWazFF4pQIfOZOnbHafLN8ByxLsHAICilTRWs7kcvkmtY+CbuzQqB13om9OqbhV1axKmd1cnWq03DKNUvR3pHwkAzkGCEgBsqBp88ePRj77mAAD4rIIJQVvXxMsjX0hOsuzyj2HNqoGqGuJfeL0cSzba+5qQwAQA+/CzG0Xj2xQulN+mK+pCdf5iGuQAAMCdrHov2ugtWR438pgLNIhoGpWNSdZjjOejzQkA7uXRCcpp06bpiiuuUNWqVVW7dm0NGDBAu3fvLvY5c+fOlclksvoLCQkpp4gBVEQXk6UVs+VaUfcLAABnKPg1aSsZaS6H71GzdZYUpZD/MplMti+Ql/qw2tmpg+YWABTPoxOUa9as0YgRI/TLL79o+fLlysnJ0XXXXaeMjIxinxcWFqbExETL36FDh8opYgD2sjQS3RuGXREw+yIAAL6rpDEo85f5ubC5QHKr7Cx378h2D0qXJX5pRgKAXTx6DMqlS5daPZ47d65q166tP/74Qz169CjyeSaTSVFRUa4Or8LjuxQVWWnaoPw2AADAB1n1oCz6Fm9Xtp25xduJTLZfK8PBUSht3e4PACg9j+5BeamUlBRJUvXq1Ystl56ertjYWMXExKh///7avn17seWzsrKUmppq9QfAtext0nlS44/eCyiKI+cG5xEAeJeCbRHbH+EXlpbXHRd8j5ROwdfRZgdKFx9XXjYAKJ7XJCjNZrNGjx6tbt26qVWrVkWWa9asmebMmaPFixfrk08+kdlsVteuXXXkyJEinzNt2jSFh4db/mJiYlyxCwAcwF3V5YcGMwAARSvpFm9zOdziXR4T8VR0BYcXsvValfYQ02QFAOfwmgTliBEjtG3bNs2fP7/Ycl26dNGQIUPUrl07XX311Vq4cKFq1aqld999t8jnTJgwQSkpKZa/w4cPOzt8r8S4e3Ct/N4Gbg7DDl4QIjyEqZizxRvOdQBAYYa9t3i7dAzKgr04yVaWRf5EqoU4eFjt7XHJ1z8A2Mejx6DMN3LkSC1ZskRr165VvXr1HHpuYGCg2rdvr3379hVZJjg4WMHBwWUNE4AXsufHBIklAAAgFTVJzoWFFyZecU3ykB6UZeeqHpT2b58XEQCK49E9KA3D0MiRI/X1119r5cqViouLc7iOvLw8bd26VdHR0S6IsGIjJwNXcvss3qVoI9KsBADA91j3oCy8vnwmyXFh5T7CcghNtu8UK20CkbvOAMA5PLoH5YgRI/TZZ59p8eLFqlq1qpKSkiRJ4eHhqlSpkiRpyJAhqlu3rqZNmyZJmjp1qjp37qzGjRsrOTlZL7/8sg4dOqT777/fbfsBoPQ84WJzfrOzwl75rqC7BQCAM1hNkmOjLZC/3s+FiSqrW7z53i6V/GNY3j0oyV8CgH08OkE5a9YsSVLPnj2tln/44Ye65557JEkJCQny87vYEfTs2bMaPny4kpKSVK1aNXXo0EHr169XixYtyitsuAENNe9V9FVnD2rN0bIEAMBn2d2D0pWT5Liuap9jMrlnFm8AQPE8OkFpT2+l1atXWz1+9dVX9eqrr7oooorBbDb0487jal0vXNHhlUosv+tEpnLzDLWKrlIO0cHZ/jySprBKAWpUo+TXujzZ2wY8lpqtLzafUKuoKmoRZfscPJOZo9X7khUeEqCejSPkX8w0mtuTMkrdw8GX2q1fbD5RaFnlQH9d0yRCVYL83RCR78nONevng6nqUC9UYSEe/XVt087jmcozu/+7IyfPrHXxqWpfN1QRlTz7OCamZunA6fPq2iCMWwYBD1Lw+/9kRo4+/C1JA1rV0Lr4VP11LF3H07IlFU56FfwurV8tRJ1jw0odw6n0HMv/P9t0Qt3iwtWgekip6yuL1PO52ng4Td3iwhUc4NEjhllJSvn7dZLtSXJmrTqmWy6vqUa1HWsz82lddtm5Zv28L1UdYkMVVsbv6j8P/f3bx8HX0VVy8wytPZCiRtWkcNGGBorj2S11uMQ3fx3T6P9uliQdfPGGYsvmmg3dN3+3JOmHB1urarBnnjL8jrMtMTVLIxZemCBq/WPt3RxN6c1ce1SVA/209IE2CvAv/GK/ue6olu46K0l65eaG6tIg3GY9Gdl5Gv7FHknSY1fVlWRfo/LiLd4Oh+4VbO3WzLVHbZY9mZGje6+Mcm1AkCS9/2uiPv3jhBrXDNFHdzV3dzgOyckza9h/L3x3LH+ojVuT2nN/P64Pf0tS/WrBmv8vz76b4p9zd0iSXr6pobrF2f4cA+B+7/+SqAV/nVTyuVyr5cH+fpLyLI8v/S796p4Wig4r3cScGdkX6z17LlePLtyrb+9vXaq6yurfi/dr5/FM3dGulkb3cGwCU3davStFkpSVa1ZIQOEW4MI/TmnhH6e0/mnntplNpDBL9P6aRH36ywk1rh2ij4aXvs1zLDlLIz75+7ePk1/H0vr4j+N6/5dERVcN0Oxh3vN+AdzBey55wWnW7Ttld9m8AvexpJzLK6YkPNHRv68UeyJHJ8nJzDErx2z7BqeCPxCSizlPU89fXJedy81SRbmsdmX1bhph9deg2oVeGinnc0t4tm9yJHdtb9kf91xIuu87dd7heNwtO+/iXqZnufe7Y+XeC8cx4WyWW+NwxJZjGe4OAUABti5QXpqcrBLkpzE96+n1WxpLktrXDbV8hwb/nQxLOV/6z8OaVQKtHp/OdN/38c7jmZKkZX9fHPYW1atc6GjRul4VXd6gqu7qXLtM9VXUC9fusHz7322eE2Vr8xw543nf9av2Xdi3xDTa0EBJPLM7HACfZytxWdQMltbLnd9a9JUeutc1q6YpfRrYXPfO+mM6uPE8jXEAgM8x7Ghb9Lusuq5uFCGp8F0rt364XUlp2TKX4UuUWbzLLv8QxtYIUXCAn0b2qquHetZRjxc3l8/2eQ0BoFj0oATgFpY2mgPJv6IadgWXu6LtV9Fv8bZHfpLWhw+BfXwkme0Id58z7t4+AO9X1u///KGxy1KPPWPzlzd7ErcexdZkRuXwve0rF7oBoKxIUALwGkX1PCi43NH2O41G+46Z5TB54A8kAAA8WX5boyy9IBmYpuzyE6rOyk/SIgIA5yJBiSKRuIFLOTgGpeS+HpQX6/bdpmj+bJe+ewRQWu7+KnH39gF4v7L3oPz7O7QMFXliD0pvm/wl/wgW/I1Tnr93PO8VBADPQoISgNcougdlgQcuaP35SrK+uN30kUMAF3D3DzJ3bx+A9yvr+I/536Fl6kHpgR9m3nrhtmBi1RntG19pJwKAq5GgRJG86bvWAy8qowS2brMpyFZjr6iXuWAD2d5ToTSnDKcZ7zUAgC8q25efM8Zx5vu37GwdQ1MZsou8JgDgXCQoAXgNu27xdkFr0XKlvYI2RB3pAVFBDwFcyN0Xu9y9fQDer6zffU65xdsDv4G99RZvd4VNQhMAikeCEhUCt1Z4n4vjANn/4hV1e1PB5bT9XIP3GErL3e9Jd28fgPcra2LJKZPkeOCHmScmTYtVivHP7UETCQCcgwQlikRCAp6mqJ4HBZe7oqnsjFuzvEFx7/n8VZ44SD8AAK5U9h6Uf9dTpklyyhgEbE6S45wai8dPKgCwDwlKAG5Rmoa22cHlxW7fgbIXk3Ol2FAFwSzexfPlc6Mk7v5h5u7tA/B+Ze5B+fcnUdl6UHreF43X3eJtFD/+ucu3TysKAIpFghIVgge22VBGthqP9vSgpO3nWrzXylEFOdbu3g13bx9ARVC2T5KLPSjLEIEHfph5W8Lt4hiUzk1RlmWiHTiXJ56RnvjeBTwVCUoAbuVIm85tY1BabvGu2C2M4npC+Mpt7mVV3OnMzxcA8E5OG4OyDN+injgGpddx0RiUJSF/CQD2IUGJCoEvft/gilm8HTl3fPkKqOUw+fAxKHd8rgGARyjrV59lmJSy9KC0EQXjQjvG2WNQOnz4eblczhObTvxOBewX4O4AUP6+/OOI5f/dXlzplDr/++cJrT+Yquk3NlRIYMXNe5sNQ898H68DZ85rdI966hwb5rS65/95Qgu3nNKQKyJ1Y4saTqvXUxmluIr9yFd7FeBX+BmnMnIu1lvGuGyp6O0KexrYlnE4y6l1nWs2NGHJAbWIqqJ7r4yyWjdz7REln8vV5Otivf62qqMpWZq67JDu7hCpqxqGW6/khwzglQzD0LPLDmnLsYwSy6aez1VWnln/6RenqxtFuD64Ivx0IEWf/HFck66LVd3wYLfF4anKPEnO3/9OXnpQmTkXRs5uGVVZwQF+mn5jQ3226YSW7jqja5tW00Nd6+h4WrYmLT2oW1rXVK8mEXr82wM6mpJdqN4Ve5PVu2m1MkbnO0rT9jxyNkvPfXNI/+oSqe5Nw0t+QgkOnT6vF5Yk6N7uUercyHm/I2wxDEMTvz6o6IggjfhHXZduq7y8+F2CJOnJG+pbLV+7O1mf/XJCfVtXd0dYki62XZtHVtZ9naKVej5XE76L175T5wuVnbsuSVuPZGj67Q0V4O/dbVl3+s+3h1Qp0E9j+8Y4pb6dxzL16rIjevgfdfTZhuNqUaeK7r0qquQnwmkqbiYJRWpd9+KX69Hkc4X+8kVUsj9//dpPR/X74TQt3nbKqbHaq7wuICemZmv1/hQlnM3S8t1nnVr36z8d1ZGULL3x01Gn1uutosKC5H/JJ9SpjBwlpWUX+st18T3e3jYIvEuU8y3e6w6k6OeDqXr/l8RC677YfFLLdp9VQnJWOUXjOi/8mKCtiRl6YskBd4cCwEnOnsvVst1nbX5fXfqXmWNWnlma8F28W2N+YskBbU3M0PPLE9wah8f6+8svNMi/yCLXF3NxObZ6iCRZkpOStD0pU5uOpOu/f57Qh78lKTE1Wx9tPC5J+vC3JG1NzNDUZYd04PR5/ZqQZrPeH3adcXRPfFr+RVZHrm0+/+0hbT2SoccXFP09XVJ1BduRkxYe1NYjGRozf7/9QZTSzmOZWrkzWZ9uOOHybZWH1HO5+mbzaX2z+bRSMnOt1j35Zby2HMnQS/877KbopA0HU/XzwVTN/jVJkjT39yT9eTTdZtn31iRqw/5Urd6dXI4RViyJKdn6fssZffXHKWXnlmbK1MJGfLJX245maMTHe/XzvlS9v7bw7xC4Fj0ofdCbd7XXgZMZiqgcKD8b39Bvr9qrH3acUEiAn8OJv3NO+nDwVAVnUMxzUVY0LSvPJfV6qqIaidUrB2rxfa2UlWuoeuUA7T99znbBv73x01H9dSzD7gQad0UVVlyDPb9xXV7HLauIz5KCt7PlVYABuVLO5xa9krw44JXy/v748jNJ793RtMhyX/11Sv/zsARTalYxn0k+LD+xNapHXdWvFqIgf5PyDENhwQHKyM5TeKUARVUNKvL5E3rV1+1ta+ne+bsLrSuYtMyXmHqxt2TB9uaS+1spKS1bS7af1qJtp1WxW93Od/FQWn/Brny8rVbuPKv/fJvwdznDcodG6rmi2+WlucP7bGb5vcey87y/nVRQwXafJ85qf2nbNSO75HeosxJrvsgVvwPO2/g8RvkiQemDYmtUUWyNKkWub1MvXD/s8K4rbeV1l6dVRz3P+170KvbcKly9cqDl/y0iiz5nJalmlcC/63WMPb0jmSCG8XPcwpdPOMCL5V9I8TOZiv3uWhuaUl4hoYwstwabpNbRxbdHbPH3M6lZ7cqKqBSg5HOOJajyt10nLEjVKweqeuVAHTpzXou2nWYMylK6tE0TEuinro0v3mFm6GIKk/YPAJQfbvFGIZZkDG2eQgoeE0+8cgfXDhhfUV9ye3bLMgalm49BBX0JAFQg+f0vbAyZbIXEh/ewTK7irIocYC6QHM2X37uvAtxIUK6KG4PSZKOcVPL7uMgKHVkPAJBEghIlKK8JMbxFwaSkuxM13u5iI9E5rTZ6OboWP6Rdo9jPEY454JXyL5SV9Llpa5gdeKaibg12uB6bM3GXtO2/z6cC2/aUi4beymaCsoiXtrjJ+Dj+AOBcJChRiGWsOTfH4YjyaiAU3AxXrT2LyYWzuJD8vMjdFy0qyo8Bu3r6VpB9BXxN/tu7pAQk6UnvU1455YLbyf8q8DMVXs/dPI6xN89c8Kja1YPS3u3zcgFAsUhQokjuTkR4IuuGBcfHE7n0VaFl6fZDYBTxfwDwFJZbckso54kdKN39Ge+p8tvEzkxW5SvpPLB1i3d+8puXyzF2DwNUoFhxPSgtZUoZDxzjdee71wXsvTjUFQcJShRiddXWS97t5TdJTsHZ48pnm7CPo2On2nsLnlTxG572HDNv7FntDsXOhO7oB5U3n3icKPBhF5NZxb+JucXbezirPWxPNZcm0QpOupTPz8E2D6zZGl7IutfqxQPrjKQ073QAsA8JShRi+RKl0VOI9SQ57oujIrAMOO/kVpsrev6a6KngOT19CvZqcF8U5cOXTzjAi9nq8WaLx3yuFuCJMXmCi22WMo5Bacfn+qXty+InyeGLwhFGMe/NgknLgofVme8JXq2y8bqPJ68L2Ivx5qowSFCiSLzPCyvYaHTlbNFwnKNtgNK8ehX9JS+299/f/7r7GBRMQFfwlwOAlyouCVKQJzbC3f0Z76mKm/3ZWXUXfGzYaG8W7MlHD8rSKW42dlvjfl4oS5bJU3jd6e51AXsvDnXF4YltI7hZUVeHPfmqerlNklPwFu/y2WSF5ezGvj23eJf2HPbgU98p7Op1apkoiCZAuanoJx6K5MnftyhZfq82vxLexGXtjYfy49IE5SXfq5c+vjimaeFZvLmbxzFGcRlKq4IX/2vPLd7e2Fva03CMAEgkKFEMw7hkQgoaQfSg9GD2jJFo3SPB8W348ivuMT0ofelF8OJ99ajvDndvvxTcfsxQJnb3oOQHudfITxqWNYli67196bJLk44XZ4W/uMwySY6bPyy876Pq79fRxpoie1AW85o7fPy974CVG773UBbu/iyE83hFgvKtt95SgwYNFBISok6dOum3334rtvyCBQt02WWXKSQkRK1bt9b3339fTpHCXcrrqlvBq9pctS4bZzX28zk6SQ4KK+6loKcPANjHbOOWXFv4WIVUdELSst5Geyn//9zN45jix6AsWK7gJDm8UQGgvHh8gvK///2vxowZo8mTJ2vTpk1q27at+vTpoxMnTtgsv379eg0aNEjDhg3Tn3/+qQEDBmjAgAHatm1bOUfuvSyJniKW+7Ky9sCD6xV3C3Kpb/Hm3PecHpQF/l/hX5YKsoNuf/+4e/ul4PZjhjKxd0IVTxzbjnPPtouJrTJOkmOjjXLpErNhWPfms7FtT7ko622ny8U7vG3N4m0qVO7C8pLrLem97G3HyR3sO85exusC9l78LK84AtwdQElmzJih4cOH695775UkvfPOO/ruu+80Z84cPfnkk4XKv/baa+rbt6/Gjx8vSXruuee0fPlyvfnmm3rnnXfKNXZvdzI9R+sOpFgerz+YqlpVAot9zpZj6Vq9L9nFkdnabobl/67cfvyZ85b/n8nMcdm2nFXvzuOZTq/TWfIsl/2d8+2d37A5cPp8kft6JjPH8v+DBV5Lex1NyfK44+gMB06XfCzyX6UT6a477wvadCTd8v+C28sp0NXkl0OpSjib5fJY7JGWledQ+VX7kuVnMll9plx6XI+n5RS5ztOdy7nYr2d9fIqqVy7+u8OVCp4j3nIctyZmuDxWbzkW3uhY6oVzrqQelJeu94TXpLjvUF+WfD5XkmvyDbtPZFo9XnsgxaqNsjXxQhu3YK+S/PFNU8/nuvX1SjmfVy7bz8rJUlK6Wcey0xQcmF3qerJzi757p+Cin/akKDjgwhGPP1Xge3pXstVzjiY7FsuBU+d0Kr3Ad/sl9TnbnqQCvwNcvK2yOp5a8nFJL9DW+nlfqkKD/Yuts2A9eeZcncs+L2VIlYLz5O/v/DTIpiNpF7e9L1k7kjIKlfl5X4YqBV7cj02H0lU5yN8SY05ermqEnNTpU+kKDDzvkjjzFfe+ysrJUlKSWcfSHXvP2aqztHXl5f39mp2SKgXmyd/P+licLNBOLviedbbSvneKOufy8nKVk5OrPZnHFRBw8RyuVTVYHWKrOyNkr2YyPPiG/ezsbFWuXFlffvmlBgwYYFk+dOhQJScna/HixYWeU79+fY0ZM0ajR4+2LJs8ebIWLVqkv/76y+Z2srKylJV18QdMamqqYmJilJKSorCwMKftj7eYu26/pizZ5e4w4CMW39dStUKDylzP9JUJWrzttMPPu755dT1zbWyxZeb9nqR3NySWNjSv0b9VDT3xj/o21y3adkovrTxczhF5nzduaawOMVVtrkvLylWfd7eWc0QA3KVOWJC+vKdlkeu/2nJSr6w+Uo4RoaxeurGhujcML/Xzh3+xW9uTMksuaEPbOlU067amkqSNh9P02Nf7Sh2Hr/vsweZqUDPEallOnlk9X/yrVD2xHuoZrSHdoopc/8rSw/rqj1OlqBmAr7imWS19eO+V7g7DJVJTUxUeHm5Xfs2je1CeOnVKeXl5ioyMtFoeGRmpXbtsJ9CSkpJslk9KSipyO9OmTdOzzz5b9oAriF7Na+uHLYeVnm3IZDJpy99XbttEVynyOfllWkZVlr8b7g/KMwxLg6+4OJ0hMydP+06dd/p28vehdXQVp16ht+f1c5fmkZVVs4Reufa6uWVNHUvJVlZu8SMyFTweQQEm9W9Vs8S6ezWppq2JGVZXbiua4AA/3dSyRpHru8eF65eGqUo+l1su8Ri62Gvk0nPXU8/pqLAgtSompqrBARrSMVKbj17sHZp8PlcJZ7Pkb5JaRlk/90xmro6kZCnI36TLald2Wdyu4imvU/K5XCUkZ8nfT2oZ6VnnzKUs36WRleXvghlUjqZk6XRmrsJD/BVbLaTkJ6DUTCbphhZFf6ZKUo+G4fpxz1n9dSxDJkmt3fhe2Z6UoTxDql8tWBEhHv3zwG1qhQaqfb3QMtXxys2N1Pc96wtV+e2+nccz1Tzywmd9rtnQjuOZCgnwU9NaleRnMmnQ5bWtnnNds2pKSi19b8Ky2HPynM7nmlUnLMhp7bji5Blmnc85p5DgSvL3K1svqUa1Kym2RnCh5YH+frq/R7R+PZBqtTw716xdSecufIfUKfweDQ3x1z9aVCt2mze2raGEM1nKyjHrdEaOjp7NVlCASZdFuf67fcuRv7+L63n295/luPibdFl00celqP3ZfvTvz7AawUo4nVWojCFDeXl5Up7k7+fvkrHVL227ZueZtevEOct6P5N0WXSw/P38tfXIhd+tretd/N1nyJDZMCvYL1hZWVny8/Nz6Rjwxb2v8sxmnT9/TiGBjr3nbNVZ2roMw1CeOU8K+Ps1s/EL2dnn99GzWTqdkavwSv5KOZdXprqLOucMw5DZbFZISIjV69sk0nYHB1/j0T0ojx07prp162r9+vXq0qWLZfnjjz+uNWvW6Ndffy30nKCgIM2bN0+DBg2yLHv77bf17LPP6vjx4za3Qw9Kazk5OYqPj1dwcLACA913Wx4AAAAA35aZlan9p/erUWwjVQ7xvgt2cL+cvByln0uXkqXQyqHl/hs3J+fv7UdIoSGhCvQvvP2cvBxl5WapXmg9HUk44vLf4sW9rzLPZ2r/gf1qVMux95ytOktblz3HzJMVdc7l5OQoKytLcXFxPpNrqTA9KGvWrCl/f/9CicXjx48rKsp2N/qoqCiHyktScHCwgoMLX0kDAAAAAAAA4FoePYt3UFCQOnTooBUrVliWmc1mrVixwqpHZUFdunSxKi9Jy5cvL7I8AAAAAAAAAPfx6B6UkjRmzBgNHTpUHTt21JVXXqmZM2cqIyPDMqv3kCFDVLduXU2bNk2SNGrUKF199dV65ZVXdMMNN2j+/PnauHGj3nvvPXfuBgAAAAAAAAAbPD5BOXDgQJ08eVKTJk1SUlKS2rVrp6VLl1omwklISJBfgcFWu3btqs8++0zPPPOMnnrqKTVp0kSLFi1Sq1at3LULAAAAAAAAAIrg8QlKSRo5cqRGjhxpc93q1asLLbv99tt1++23uzgqAAAAAAAAAGXl0WNQAgAAAAAAAKjYSFACAAAAAAAAcBsSlAAAAAAAAADchgQlAAAAAAAAALchQQkAAAAAAADAbUhQAgAAAAAAAHCbAHcH4IkMw5AkpaamujkS98jJyVF6eroyMzMVEMApAgAAAMA9zuecV0Z6hlJSU3T+3Hl3hwMvlGvOVVZ2lpQu5WTllPtv3NzcXGXlZkn+Us75HAX4Fd5+rjlXZsOsVHNqufwWL+59dT77vDIyMpQSlKLzmfa/52zVWdq67Dlmnqyocy43N1dms1mpqakKDAx0c5TlIz+vlp9nK453vcrlJC0tTZIUExPj5kgAAAAAAAAA75WWlqbw8PBiy5gMe9KYPsZsNuvYsWOqWrWqTCaTu8NxmtTUVMXExOjw4cMKCwtzdzhAueC8h6/hnIcv4ryHr+Gchy/ivIevqQjnvGEYSktLU506deTnV/wok/SgtMHPz0/16tVzdxguExYW5rUnN1BanPfwNZzz8EWc9/A1nPPwRZz38DXefs6X1HMyH5PkAAAAAAAAAHAbEpQAAAAAAAAA3IYEpQ8JDg7W5MmTFRwc7O5QgHLDeQ9fwzkPX8R5D1/DOQ9fxHkPX+Nr5zyT5AAAAAAAAABwG3pQAgAAAAAAAHAbEpQAAAAAAAAA3IYEJQAAAAAAAAC3IUEJAAAAAAAAwG1IUPqQt956Sw0aNFBISIg6deqk3377zd0hASWaMmWKTCaT1d9ll11mWX/+/HmNGDFCNWrUUGhoqP75z3/q+PHjVnUkJCTohhtuUOXKlVW7dm2NHz9eubm5VmVWr16tyy+/XMHBwWrcuLHmzp1bHrsHSJLWrl2rm266SXXq1JHJZNKiRYus1huGoUmTJik6OlqVKlVS7969tXfvXqsyZ86c0eDBgxUWFqaIiAgNGzZM6enpVmW2bNmiq666SiEhIYqJidFLL71UKJYFCxbosssuU0hIiFq3bq3vv//e6fsLlHTO33PPPYU++/v27WtVhnMe3mTatGm64oorVLVqVdWuXVsDBgzQ7t27rcqUZ5uG3wUoD/ac9z179iz0ef/QQw9ZleG8h7eYNWuW2rRpo7CwMIWFhalLly763//+Z1nP53wJDPiE+fPnG0FBQcacOXOM7du3G8OHDzciIiKM48ePuzs0oFiTJ082WrZsaSQmJlr+Tp48aVn/0EMPGTExMcaKFSuMjRs3Gp07dza6du1qWZ+bm2u0atXK6N27t/Hnn38a33//vVGzZk1jwoQJljIHDhwwKleubIwZM8bYsWOH8cYbbxj+/v7G0qVLy3Vf4bu+//574+mnnzYWLlxoSDK+/vprq/UvvviiER4ebixatMj466+/jJtvvtmIi4szzp07ZynTt29fo23btsYvv/xi/PTTT0bjxo2NQYMGWdanpKQYkZGRxuDBg41t27YZn3/+uVGpUiXj3XfftZT5+eefDX9/f+Oll14yduzYYTzzzDNGYGCgsXXrVpcfA/iWks75oUOHGn379rX67D9z5oxVGc55eJM+ffoYH374obFt2zZj8+bNxvXXX2/Ur1/fSE9Pt5QprzYNvwtQXuw576+++mpj+PDhVp/3KSkplvWc9/Am33zzjfHdd98Ze/bsMXbv3m089dRTRmBgoLFt2zbDMPicLwkJSh9x5ZVXGiNGjLA8zsvLM+rUqWNMmzbNjVEBJZs8ebLRtm1bm+uSk5ONwMBAY8GCBZZlO3fuNCQZGzZsMAzjwo9gPz8/IykpyVJm1qxZRlhYmJGVlWUYhmE8/vjjRsuWLa3qHjhwoNGnTx8n7w1QskuTNWaz2YiKijJefvlly7Lk5GQjODjY+Pzzzw3DMIwdO3YYkozff//dUuZ///ufYTKZjKNHjxqGYRhvv/22Ua1aNct5bxiG8cQTTxjNmjWzPL7jjjuMG264wSqeTp06GQ8++KBT9xEoqKgEZf/+/Yt8Duc8vN2JEycMScaaNWsMwyjfNg2/C+Aul573hnEhQTlq1Kgin8N5D29XrVo1Y/bs2XzO24FbvH1Adna2/vjjD/Xu3duyzM/PT71799aGDRvcGBlgn71796pOnTpq2LChBg8erISEBEnSH3/8oZycHKtz+7LLLlP9+vUt5/aGDRvUunVrRUZGWsr06dNHqamp2r59u6VMwTryy/D+gCeIj49XUlKS1TkaHh6uTp06WZ3nERER6tixo6VM79695efnp19//dVSpkePHgoKCrKU6dOnj3bv3q2zZ89ayvBegKdYvXq1ateurWbNmunhhx/W6dOnLes45+HtUlJSJEnVq1eXVH5tGn4XwJ0uPe/zffrpp6pZs6ZatWqlCRMmKDMz07KO8x7eKi8vT/Pnz1dGRoa6dOnC57wdAtwdAFzv1KlTysvLszrJJSkyMlK7du1yU1SAfTp16qS5c+eqWbNmSkxM1LPPPqurrrpK27ZtU1JSkoKCghQREWH1nMjISCUlJUmSkpKSbJ77+euKK5Oamqpz586pUqVKLto7oGT556mtc7TgOVy7dm2r9QEBAapevbpVmbi4uEJ15K+rVq1ake+F/DqA8tK3b1/deuutiouL0/79+/XUU0+pX79+2rBhg/z9/Tnn4dXMZrNGjx6tbt26qVWrVpJUbm2as2fP8rsAbmHrvJeku+66S7GxsapTp462bNmiJ554Qrt379bChQslcd7D+2zdulVdunTR+fPnFRoaqq+//lotWrTQ5s2b+ZwvAQlKAB6tX79+lv+3adNGnTp1UmxsrL744gsShwBQQd15552W/7du3Vpt2rRRo0aNtHr1avXq1cuNkQFlN2LECG3btk3r1q1zdyhAuSnqvH/ggQcs/2/durWio6PVq1cv7d+/X40aNSrvMIEya9asmTZv3qyUlBR9+eWXGjp0qNasWePusLwCt3j7gJo1a8rf37/Q7FDHjx9XVFSUm6ICSiciIkJNmzbVvn37FBUVpezsbCUnJ1uVKXhuR0VF2Tz389cVVyYsLIwkKNwu/zwt7jM8KipKJ06csFqfm5urM2fOOOW9wHcF3K1hw4aqWbOm9u3bJ4lzHt5r5MiRWrJkiVatWqV69epZlpdXm4bfBXCHos57Wzp16iRJVp/3nPfwJkFBQWrcuLE6dOigadOmqW3btnrttdf4nLcDCUofEBQUpA4dOmjFihWWZWazWStWrFCXLl3cGBnguPT0dO3fv1/R0dHq0KGDAgMDrc7t3bt3KyEhwXJud+nSRVu3brX6Ibt8+XKFhYWpRYsWljIF68gvw/sDniAuLk5RUVFW52hqaqp+/fVXq/M8OTlZf/zxh6XMypUrZTabLQ39Ll26aO3atcrJybGUWb58uZo1a6Zq1apZyvBegCc6cuSITp8+rejoaEmc8/A+hmFo5MiR+vrrr7Vy5cpCww+UV5uG3wUoTyWd97Zs3rxZkqw+7znv4c3MZrOysrL4nLeHu2fpQfmYP3++ERwcbMydO9fYsWOH8cADDxgRERFWs0MBnmjs2LHG6tWrjfj4eOPnn382evfubdSsWdM4ceKEYRiG8dBDDxn169c3Vq5caWzcuNHo0qWL0aVLF8vzc3NzjVatWhnXXXedsXnzZmPp0qVGrVq1jAkTJljKHDhwwKhcubIxfvx4Y+fOncZbb71l+Pv7G0uXLi33/YVvSktLM/7880/jzz//NCQZM2bMMP7880/j0KFDhmEYxosvvmhEREQYixcvNrZs2WL079/fiIuLM86dO2epo2/fvkb79u2NX3/91Vi3bp3RpEkTY9CgQZb1ycnJRmRkpPGvf/3L2LZtmzF//nyjcuXKxrvvvmsp8/PPPxsBAQHG//3f/xk7d+40Jk+ebAQGBhpbt24tv4MBn1DcOZ+WlmaMGzfO2LBhgxEfH2/8+OOPxuWXX240adLEOH/+vKUOznl4k4cfftgIDw83Vq9ebSQmJlr+MjMzLWXKq03D7wKUl5LO+3379hlTp041Nm7caMTHxxuLFy82GjZsaPTo0cNSB+c9vMmTTz5prFmzxoiPjze2bNliPPnkk4bJZDKWLVtmGAaf8yUhQelD3njjDaN+/fpGUFCQceWVVxq//PKLu0MCSjRw4EAjOjraCAoKMurWrWsMHDjQ2Ldvn2X9uXPnjEceecSoVq2aUblyZeOWW24xEhMTreo4ePCg0a9fP6NSpUpGzZo1jbFjxxo5OTlWZVatWmW0a9fOCAoKMho2bGh8+OGH5bF7gGEYF84/SYX+hg4dahiGYZjNZmPixIlGZGSkERwcbPTq1cvYvXu3VR2nT582Bg0aZISGhhphYWHGvffea6SlpVmV+euvv4zu3bsbwcHBRt26dY0XX3yxUCxffPGF0bRpUyMoKMho2bKl8d1337lsv+G7ijvnMzMzjeuuu86oVauWERgYaMTGxhrDhw8v1KjmnIc3sXW+S7Jqb5Rnm4bfBSgPJZ33CQkJRo8ePYzq1asbwcHBRuPGjY3x48cbKSkpVvVw3sNb3HfffUZsbKwRFBRk1KpVy+jVq5clOWkYfM6XxGQYhlF+/TUBAAAAAAAA4CLGoAQAAAAAAADgNiQoAQAAAAAAALgNCUoAAAAAAAAAbkOCEgAAAAAAAIDbkKAEAAAAAAAA4DYkKAEAAAAAAAC4DQlKAAAAAAAAAG5DghIAAAAAAACA25CgBAAAgCRp9erVMplMSk5OLrZcgwYNNHPmzHKJCQAAABUfCUoAAAAvcs8998hkMslkMikoKEiNGzfW1KlTlZubW+a6u3btqsTERIWHh0uS5s6dq4iIiELlfv/9dz3wwANl3h4AAAAgSQHuDgAAAACO6du3rz788ENlZWXp+++/14gRIxQYGKgJEyaUqd6goCBFRUWVWK5WrVpl2g4AAABQED0oAQAAvExwcLCioqIUGxurhx9+WL1799Y333wjSTp79qyGDBmiatWqqXLlyurXr5/27t1ree6hQ4d00003qVq1aqpSpYpatmyp77//XpL1Ld6rV6/Wvffeq5SUFEuPzSlTpkgqfIt3QkKC+vfvr9DQUIWFhemOO+7Q8ePHLeunTJmidu3a6eOPP1aDBg0UHh6uO++8U2lpacXu51dffaWWLVsqODhYDRo00CuvvGK1vkGDBnrhhRd03333qWrVqqpfv77ee++9YutMS0vT4MGDVaVKFUVHR+vVV19Vz549NXr0aEuZrKwsjRs3TnXr1lWVKlXUqVMnrV692rI+v2fpDz/8oObNmys0NFR9+/ZVYmKipYzZbNbUqVNVr149BQcHq127dlq6dKll/cGDB2UymfTFF1/oqquuUqVKlXTFFVdoz549+v3339WxY0eFhoaqX79+OnnypNU+zJ49W82bN1dISIguu+wyvf3228XuMwAAgKcjQQkAAODlKlWqpOzsbEkXbgHfuHGjvvnmG23YsEGGYej6669XTk6OJGnEiBHKysrS2rVrtXXrVk2fPl2hoaGF6uzatatmzpypsLAwJSYmKjExUePGjStUzmw2q3///jpz5ozWrFmj5cuX68CBAxo4cKBVuf3792vRokVasmSJlixZojVr1ujFF18scp/++OMP3XHHHbrzzju1detWTZkyRRMnTtTcuXOtyr3yyivq2LGj/vzzTz3yyCN6+OGHtXv37iLrHTNmjH7++Wd98803Wr58uX766Sdt2rTJqszIkSO1YcMGzZ8/X1u2bNHtt9+uvn37WiV6MzMz9X//93/6+OOPtXbtWiUkJFgdn9dee02vvPKK/u///k9btmxRnz59dPPNN1vVIUmTJ0/WM888o02bNikgIEB33XWXHn/8cb322mv66aeftG/fPk2aNMlS/tNPP9WkSZP0/PPPa+fOnXrhhRc0ceJEzZs3r8h9BgAA8HgGAAAAvMbQoUON/v37G4ZhGGaz2Vi+fLkRHBxsjBs3ztizZ48hyfj5558t5U+dOmVUqlTJ+OKLLwzDMIzWrVsbU6ZMsVn3qlWrDEnG2bNnDcMwjA8//NAIDw8vVC42NtZ49dVXDcMwjGXLlhn+/v5GQkKCZf327dsNScZvv/1mGIZhTJ482ahcubKRmppqKTN+/HijU6dORe7nXXfdZVx77bVWy8aPH2+0aNHCKo67777b8thsNhu1a9c2Zs2aZbPO1NRUIzAw0FiwYIFlWXJyslG5cmVj1KhRhmEYxqFDhwx/f3/j6NGjVs/t1auXMWHCBMMwLhwXSca+ffss69966y0jMjLS8rhOnTrG888/b1XHFVdcYTzyyCOGYRhGfHy8IcmYPXu2Zf3nn39uSDJWrFhhWTZt2jSjWbNmlseNGjUyPvvsM6t6n3vuOaNLly429xkAAMAbMAYlAACAl1myZIlCQ0OVk5Mjs9msu+66S1OmTNGKFSsUEBCgTp06WcrWqFFDzZo1086dOyVJjz32mB5++GEtW7ZMvXv31j//+U+1adOm1LHs3LlTMTExiomJsSxr0aKFIiIitHPnTl1xxRWSLtyOXbVqVUuZ6OhonThxoth6+/fvb7WsW7dumjlzpvLy8uTv7y9JVrGbTCZFRUUVWe+BAweUk5OjK6+80rIsPDxczZo1szzeunWr8vLy1LRpU6vnZmVlqUaNGpbHlStXVqNGjWzuT2pqqo4dO6Zu3boViv+vv/6yWlYw/sjISElS69atrZbl15uRkaH9+/dr2LBhGj58uKVMbm6uZWIjAAAAb0SCEgAAwMtcc801mjVrloKCglSnTh0FBNjfpLv//vvVp08ffffdd1q2bJmmTZumV155RY8++qgLI5YCAwOtHptMJpnNZo+rNz09Xf7+/vrjjz8sSdB8BW+Ft7VdwzAc3l7Bekwmk81l+fuTnp4uSXr//fetktCSCsUKAADgTRiDEgAAwMtUqVJFjRs3Vv369a2Sk82bN1dubq5+/fVXy7LTp09r9+7datGihWVZTEyMHnroIS1cuFBjx47V++//f3v3EwrvFsdx/EOZNDVE/hQlBqOnDMa/GspsZjEyxc5iaiiUKMmkrEzYycjCRleNjcKOhWwmC00Wo1gJC5vZsRhTLJTJ3U2Je3Op39Pl/apn8ZxO53zPs/x0znP++nAei8WiTCbzr7UYhqFkMqlkMpltu7y81MPDw5s5/yvDMBSPx9+0xeNxORyOL4dxdrtdeXl5SiQS2bZ0Oq2bm5vsu8vlUiaT0d3dnerq6t48n7nhXJIKCgpUUVHxYf3f+Sbl5eWqqKjQ7e3tu9pqamq+PC4AAIDZ2EEJAADwQ9TX16u/v19jY2Pa2NiQzWbT3NycKisrs8elp6en1dvbK4fDoVQqpePjYxmG8eF41dXVenx8VCwWU3Nzs6xWq6xW65s+Xq9XTqdTgUBAa2trenl50cTEhDwej9rb27+8llAopI6ODi0tLWlwcFCnp6daX1//1o3VNptNQ0NDmp2dVXFxscrKyhQOh5Wbm5vdvehwOBQIBBQMBhWJRORyuXR/f69YLKampib19fV9aq7Z2VmFw2HV1taqpaVF0WhUFxcX2t7e/nL9krSwsKCpqSkVFhbK5/Pp+flZZ2dnSqVSmpmZ+dbYAAAAZmEHJQAAwA8SjUbV1tYmv98vt9ut19dXHR4eZo8NZzIZTU5OyjAM+Xw+ORyOfwz9urq6ND4+rsHBQZWWlmp5efldn5ycHO3v76uoqEg9PT3yer2y2+3a3d391jpaW1u1t7ennZ0dNTY2an5+XouLixoeHv7WuKurq3K73fL7/fJ6veru7pZhGMrPz8/2iUajCgaDCoVCamho0MDAgBKJhKqqqj49z9TUlGZmZhQKheR0OnV0dKSDgwPV19d/q/7R0VFtbm4qGo3K6XTK4/Foa2uLHZQAAOB/Lef1Kz/LAQAAAH6Ap6cnVVZWKhKJaGRkxOxyAAAAfiWOeAMAAODXOD8/19XVlTo7O5VOp7W4uChJ724MBwAAwJ9DQAkAAIBfZWVlRdfX17JYLGpra9PJyYlKSkrMLgsAAODX4og3AAAAAAAAANNwSQ4AAAAAAAAA0xBQAgAAAAAAADANASUAAAAAAAAA0xBQAgAAAAAAADANASUAAAAAAAAA0xBQAgAAAAAAADANASUAAAAAAAAA0xBQAgAAAAAAADDN3xYaGywSJYOrAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -723,6 +707,124 @@ "source": [ "ti.plot_masked_samples_per_site()" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Deletions\n", + "\n", + "We have 4 different deletion events: 1 bp at 1470, and 3 3p deletions at 3852, 7117 and 29364" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + " \n", + "
idsitenodetimederived_stateparentmetadata
014702811--1{'sc2ts': {'group_id': 'fc2507ade37c3...
138522911--1{'sc2ts': {'group_id': 'fc2507ade37c3...
238532911--1{'sc2ts': {'group_id': 'fc2507ade37c3...
338542911--1{'sc2ts': {'group_id': 'fc2507ade37c3...
47117359--1{'sc2ts': {'group_id': '2f508c7ba0538...
57118359--1{'sc2ts': {'group_id': '2f508c7ba0538...
67119359--1{'sc2ts': {'group_id': '2f508c7ba0538...
729364572--1{'sc2ts': {'group_id': '8f23d04fb6785...
829365572--1{'sc2ts': {'group_id': '8f23d04fb6785...
929366572--1{'sc2ts': {'group_id': '8f23d04fb6785...
\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts.tables.mutations[ti.mutations_derived_state == \"-\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Samples with one mutation" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SRR11597154 1 [{'derived_state': 'T', 'inherited_state': 'C', 'site_position': 24370}]\n", + "SRR11597151 9 [{'derived_state': 'A', 'inherited_state': 'T', 'site_position': 9477}]\n", + "SRR11597146 9 [{'derived_state': 'T', 'inherited_state': 'C', 'site_position': 29095}]\n", + "ERR4206593 54 [{'derived_state': 'T', 'inherited_state': 'C', 'site_position': 26994}]\n" + ] + } + ], + "source": [ + "s = ts.samples()[ti.nodes_num_mutations[ts.samples()] == 1]\n", + "for u in s:\n", + " md = ti.nodes_metadata[u]\n", + " hmm = md[\"sc2ts\"][\"hmm_match\"]\n", + " muts = hmm[\"mutations\"]\n", + " if len(muts) == 1:\n", + " print(md[\"strain\"], hmm[\"path\"][0][\"parent\"], muts)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([3, 0, 2, 1, 2, 3, 2, 3, 1, 4, 2, 4, 4, 1, 5, 3, 2, 0, 0, 3, 2, 0,\n", + " 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 1])" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ti.num_samples_per_day" + ] } ], "metadata": { diff --git a/sc2ts/alignments.py b/sc2ts/alignments.py index 05d373b..79cc150 100644 --- a/sc2ts/alignments.py +++ b/sc2ts/alignments.py @@ -1,12 +1,8 @@ import logging -import pathlib -import dataclasses import collections.abc -import hashlib import bz2 import lmdb -import numba import tqdm import numpy as np @@ -14,38 +10,6 @@ logger = logging.getLogger(__name__) -GAP = core.ALLELES.index("-") -MISSING = -1 - - -@numba.njit -def mask_alignment(a, start=0, window_size=7): - """ - Following the approach in fa2vcf, if any base is has two or more ambiguous - or gap characters with distance window_size of it, mark it as missing data. - """ - if window_size < 1: - raise ValueError("Window must be >= 1") - b = a.copy() - n = len(a) - masked_sites = [] - for j in range(start, n): - ambiguous = 0 - k = j - 1 - while k >= start and k >= j - window_size: - if b[k] == GAP or b[k] == MISSING: - ambiguous += 1 - k -= 1 - k = j + 1 - while k < n and k <= j + window_size: - if b[k] == GAP or b[k] == MISSING: - ambiguous += 1 - k += 1 - if ambiguous > 1: - a[j] = MISSING - masked_sites.append(j) - return masked_sites - def encode_alignment(h): # Map anything that's not ACGT- to N @@ -62,20 +26,6 @@ def decode_alignment(a): return alleles[a] -def base_composition(haplotype, excluded_sites=None): - """ - Haplotype includes an arbitrary character at the start. - Also, excluded site positions are 1-based. - """ - if excluded_sites is not None: - mask = np.zeros(len(haplotype), dtype=bool) - mask[excluded_sites] = True - # Remove the first site from both haplotype and mask. - masked_haplotype = haplotype[1:][~mask[1:]] - return collections.Counter(masked_haplotype) - return collections.Counter(haplotype[1:]) - - def compress_alignment(a): return bz2.compress(a.astype("S")) @@ -147,36 +97,3 @@ def __iter__(self): def __len__(self): with self.env.begin() as txn: return txn.stat()["entries"] - - -@dataclasses.dataclass -class MaskedAlignment: - alignment: np.ndarray - masked_sites: np.ndarray - original_base_composition: dict - original_md5: str - masked_base_composition: str - - def qc_summary(self): - return { - "num_masked_sites": self.masked_sites.shape[0], - "original_base_composition": self.original_base_composition, - "original_md5": self.original_md5, - "masked_base_composition": self.masked_base_composition, - } - - -def encode_and_mask(alignment, window_size=7): - # TODO make window_size param - a = encode_alignment(alignment) - masked_sites = mask_alignment(a, start=1, window_size=window_size) - return MaskedAlignment( - alignment=a, - masked_sites=np.array(masked_sites, dtype=int), - original_base_composition=base_composition(haplotype=alignment), - original_md5=hashlib.md5(alignment[1:]).hexdigest(), - masked_base_composition=base_composition( - haplotype=alignment, - excluded_sites=masked_sites, - ), - ) diff --git a/sc2ts/cli.py b/sc2ts/cli.py index 69f761c..9663f5e 100644 --- a/sc2ts/cli.py +++ b/sc2ts/cli.py @@ -350,6 +350,14 @@ def summarise_base(ts, date, progress): "is greater than this, randomly subsample." ), ) +@click.option( + "--max-missing-sites", + default=None, + type=int, + help=( + "The maximum number of missing sites in a sample to be accepted for inclusion" + ), +) @click.option( "--random-seed", default=42, @@ -386,6 +394,7 @@ def extend( min_root_mutations, retrospective_window, max_daily_samples, + max_missing_sites, num_threads, random_seed, progress, @@ -427,6 +436,7 @@ def extend( min_root_mutations=min_root_mutations, retrospective_window=retrospective_window, max_daily_samples=max_daily_samples, + max_missing_sites=max_missing_sites, random_seed=random_seed, num_threads=num_threads, show_progress=progress, diff --git a/sc2ts/inference.py b/sc2ts/inference.py index d02eb3c..54c5682 100644 --- a/sc2ts/inference.py +++ b/sc2ts/inference.py @@ -282,7 +282,7 @@ def initial_ts(additional_problematic_sites=list()): # 1-based coordinates for pos in range(1, L): if pos not in problematic_sites: - tables.sites.add_row(pos, reference[pos], metadata={"masked_samples": 0}) + tables.sites.add_row(pos, reference[pos], metadata={"missing_samples": 0}) # TODO should probably make the ultimate ancestor time something less # plausible or at least configurable. However, this will be removed # in later versions when we remove the dependence on tsinfer. @@ -332,12 +332,8 @@ class Sample: date: str pango: str = "Unknown" metadata: Dict = dataclasses.field(default_factory=dict) - alignment_qc: Dict = dataclasses.field(default_factory=dict) - masked_sites: List = dataclasses.field(default_factory=list) - # FIXME need a better name for this, as it's a different thing - # the original alignment. Haplotype is probably good, as it's - # what it would be in the tskit/tsinfer world. - alignment: List = None + alignment_composition: Dict = None + haplotype: List = None hmm_match: HmmMatch = None hmm_reruns: Dict = dataclasses.field(default_factory=dict) @@ -345,6 +341,10 @@ class Sample: def is_recombinant(self): return len(self.hmm_match.path) > 1 + @property + def num_missing_sites(self): + return int(np.sum(self.haplotype == -1)) + def summary(self): hmm_match = "No match" if self.hmm_match is None else self.hmm_match.summary() s = f"{self.strain} {self.date} {self.pango} {hmm_match}" @@ -471,6 +471,22 @@ def check_base_ts(ts): assert len(sc2ts_md["samples_strain"]) == ts.num_samples +def make_sample(strain, date, pango, metadata, alignment): + + sample = Sample( + strain, + date, + pango, + metadata, + haplotype=alignments.encode_alignment(alignment), + # Need to do this here because encoding gets rid of + # ambiguous bases etc. + alignment_composition=collections.Counter(alignment), + ) + + return sample + + def preprocess( samples_md, base_ts, @@ -478,9 +494,9 @@ def preprocess( alignment_store, pango_lineage_key="pango", show_progress=False, + max_missing_sites=np.inf, ): keep_sites = base_ts.sites_position.astype(int) - problematic_sites = core.get_problematic_sites() samples = [] with get_progress(samples_md, date, "preprocess", show_progress) as bar: @@ -491,29 +507,17 @@ def preprocess( except KeyError: logger.debug(f"No alignment stored for {strain}") continue - sample = Sample( - strain, date, md.get(pango_lineage_key, "PangoUnknown"), metadata=md - ) - ma = alignments.encode_and_mask(alignment) - # Always mask the problematic_sites as well. We need to do this - # for follow-up matching to inspect recombinants, as tsinfer - # needs us to keep all sites in the table when doing mirrored - # coordinates. - ma.alignment[problematic_sites] = -1 - sample.alignment_qc = ma.qc_summary() - sample.masked_sites = ma.masked_sites - sample.alignment = ma.alignment[keep_sites] - samples.append(sample) - num_Ns = ma.original_base_composition.get("N", 0) - non_nuc_counts = dict(ma.original_base_composition) - for nuc in "ACGT": - non_nuc_counts.pop(nuc, None) - counts = ",".join( - f"{key}={count}" for key, count in sorted(non_nuc_counts.items()) + pango = md.get(pango_lineage_key, "PangoUnknown") + # NOTE everything we store about the sample is **excluding** the problematic_sites + sample = make_sample(strain, date, pango, md, alignment[keep_sites]) + num_missing_sites = sample.num_missing_sites + logger.debug(f"Encoded {strain} {pango} missing={num_missing_sites}") + if sample.num_missing_sites <= max_missing_sites: + samples.append(sample) + else: + logger.debug( + f"Filter {strain}: missing={num_missing_sites} > {max_missing_sites}" ) - num_masked = len(ma.masked_sites) - logger.debug(f"Mask {strain}: masked={num_masked} {counts}") - return samples @@ -531,6 +535,7 @@ def extend( max_daily_samples=None, show_progress=False, retrospective_window=None, + max_missing_sites=None, random_seed=42, num_threads=0, ): @@ -544,6 +549,8 @@ def extend( min_root_mutations = 2 if retrospective_window is None: retrospective_window = 30 + if max_missing_sites is None: + max_missing_sites = np.inf check_base_ts(base_ts) logger.info( @@ -554,35 +561,25 @@ def extend( metadata_matches = list(metadata_db.get(date)) logger.info(f"Got {len(metadata_matches)} metadata matches") - # first check for samples that are in the alignment_store - samples_with_aligments = [] - for md in metadata_matches: - if md["strain"] in alignment_store: - samples_with_aligments.append(md) - - logger.info(f"Verified {len(samples_with_aligments)} have alignments") - # metadata_matches = list( - # metadata_db.query("SELECT * FROM samples WHERE strain=='SRR19463295'") - # ) - if max_daily_samples is not None: - if max_daily_samples < len(samples_with_aligments): - seed_prefix = bytes(np.array([random_seed], dtype=int).data) - seed_suffix = hashlib.sha256(date.encode()).digest() - rng = random.Random(seed_prefix + seed_suffix) - samples_with_aligments = rng.sample( - samples_with_aligments, max_daily_samples - ) - logger.info(f"Subset to {len(metadata_matches)} samples") samples = preprocess( - samples_with_aligments, + metadata_matches, base_ts, date, alignment_store, pango_lineage_key="Viridian_pangolin", # TODO parametrise show_progress=show_progress, + max_missing_sites=max_missing_sites, ) + if max_daily_samples is not None: + if max_daily_samples < len(samples): + seed_prefix = bytes(np.array([random_seed], dtype=int).data) + seed_suffix = hashlib.sha256(date.encode()).digest() + rng = random.Random(seed_prefix + seed_suffix) + samples = rng.sample(samples, max_daily_samples) + logger.info(f"Subset to {len(metadata_matches)} samples") + if len(samples) == 0: logger.warning(f"Nothing to do for {date}") return base_ts @@ -657,7 +654,8 @@ def add_sample_to_tables(sample, tables, flags=tskit.NODE_IS_SAMPLE, group_id=No sc2ts_md = { "hmm_match": sample.hmm_match.asdict(), "hmm_reruns": {k: m.asdict() for k, m in sample.hmm_reruns.items()}, - "qc": sample.alignment_qc, + "alignment_composition": dict(sample.alignment_composition), + "num_missing_sites": sample.num_missing_sites, } if group_id is not None: sc2ts_md["group_id"] = group_id @@ -793,7 +791,7 @@ def add_matching_results( # Group matches by path and set of immediate reversions. grouped_matches = collections.defaultdict(list) - site_masked_samples = np.zeros(int(ts.sequence_length), dtype=int) + site_missing_samples = np.zeros(int(ts.sequence_length), dtype=int) num_samples = 0 for sample in match_db.get(where_clause): path = tuple(sample.hmm_match.path) @@ -841,7 +839,8 @@ def add_matching_results( continue for sample in group: - site_masked_samples[sample.masked_sites] += 1 + missing_sites = np.where(sample.haplotype == -1)[0] + site_missing_samples[missing_sites] += 1 flat_ts = match_path_ts(group) if flat_ts.num_mutations == 0 or flat_ts.num_samples == 1: @@ -881,7 +880,7 @@ def add_matching_results( tables.sites.clear() for site in ts.sites(): md = site.metadata - md["masked_samples"] += int(site_masked_samples[int(site.position)]) + md["missing_samples"] += int(site_missing_samples[int(site.position)]) tables.sites.append(site.replace(metadata=md)) # NOTE: Doing the parsimony hueristic updates really is complicated a lot @@ -1074,7 +1073,7 @@ def match_tsinfer( ): if len(samples) == 0: return [] - genotypes = np.array([sample.alignment for sample in samples], dtype=np.int8).T + genotypes = np.array([sample.haplotype for sample in samples], dtype=np.int8).T input_ts = ts if mirror_coordinates: ts = mirror_ts_coordinates(ts) diff --git a/sc2ts/info.py b/sc2ts/info.py index 8704924..d539530 100644 --- a/sc2ts/info.py +++ b/sc2ts/info.py @@ -372,7 +372,7 @@ def __init__( self.nodes_max_descendant_samples = None self.nodes_date = None - self.nodes_num_masked_sites = None + self.nodes_num_missing_sites = None self.nodes_metadata = None top_level_md = ts.metadata["sc2ts"] @@ -427,7 +427,7 @@ def _preprocess_nodes(self, show_progress): ts, show_progress=show_progress ) self.nodes_date = np.zeros(ts.num_nodes, dtype="datetime64[D]") - self.nodes_num_masked_sites = np.zeros(ts.num_nodes, dtype=np.int32) + self.nodes_num_missing_sites = np.zeros(ts.num_nodes, dtype=np.int32) self.nodes_metadata = {} self.nodes_sample_group = collections.defaultdict(list) samples = ts.samples() @@ -448,25 +448,15 @@ def _preprocess_nodes(self, show_progress): md = node.metadata self.nodes_metadata[node.id] = md group_id = None - try: - sc2ts_md = md["sc2ts"] - group_id = sc2ts_md.get("group_id", None) - except KeyError: - warnings.warn("Node sc2ts metadata not available") - + sc2ts_md = md["sc2ts"] + group_id = sc2ts_md.get("group_id", None) if group_id is not None: self.nodes_sample_group[group_id].append(node.id) - if node.is_sample(): self.nodes_date[node.id] = md["date"] pango = md.get(self.pango_source, "unknown") self.pango_lineage_samples[pango].append(node.id) - try: - qc = md["sc2ts"]["qc"] - self.nodes_num_masked_sites[node.id] = qc["num_masked_sites"] - except KeyError: - if node.id > 1: - warnings.warn("Node QC metadata not available") + self.nodes_num_missing_sites[node.id] = sc2ts_md.get("num_missing_sites", 0) else: # Rounding down here, might be misleading self.nodes_date[node.id] = self.time_zero_as_date - int( @@ -474,10 +464,10 @@ def _preprocess_nodes(self, show_progress): ) def _preprocess_sites(self, show_progress): - self.sites_num_masked_samples = np.zeros(self.ts.num_sites, dtype=int) + self.sites_num_missing_samples = np.zeros(self.ts.num_sites, dtype=int) if self.ts.table_metadata_schemas.site.schema is not None: for site in self.ts.sites(): - self.sites_num_masked_samples[site.id] = site.metadata["masked_samples"] + self.sites_num_missing_samples[site.id] = site.metadata["missing_samples"] else: warnings.warn("Site QC metadata unavailable") @@ -597,7 +587,7 @@ def summary(self): nodes_with_zero_muts = np.sum(self.nodes_num_mutations == 0) sites_with_zero_muts = np.sum(self.sites_num_mutations == 0) latest_sample = self.nodes_date[samples[-1]] - masked_sites_per_sample = self.nodes_num_masked_sites[samples] + missing_sites_per_sample = self.nodes_num_missing_sites[samples] non_samples = (self.ts.nodes_flags & tskit.NODE_IS_SAMPLE) == 0 max_non_sample_mutations = np.max(self.nodes_num_mutations[non_samples]) insertions = np.sum(self.mutations_inherited_state == "-") @@ -629,10 +619,10 @@ def summary(self): ("median_mutations_per_site", np.median(self.sites_num_mutations)), ("max_mutations_per_node", np.max(self.nodes_num_mutations)), ("max_mutations_per_non_sample_node", max_non_sample_mutations), - ("max_masked_sites_per_sample", np.max(masked_sites_per_sample)), - ("mean_masked_sites_per_sample", np.mean(masked_sites_per_sample)), - ("max_masked_samples_per_site", np.max(self.sites_num_masked_samples)), - ("mean_masked_samples_per_site", np.mean(self.sites_num_masked_samples)), + ("max_missing_sites_per_sample", np.max(missing_sites_per_sample)), + ("mean_missing_sites_per_sample", np.mean(missing_sites_per_sample)), + ("max_missing_samples_per_site", np.max(self.sites_num_missing_samples)), + ("mean_missing_samples_per_site", np.mean(self.sites_num_missing_samples)), ("max_samples_per_day", np.max(self.num_samples_per_day)), ("mean_samples_per_day", np.mean(self.num_samples_per_day)), ] @@ -804,7 +794,7 @@ def recombinants_summary(self): df = self._collect_node_data(self.recombinants) if len(df) == 0: return - sample_map = get_recombinant_samples(self.ts) + # sample_map = get_recombinant_samples(self.ts) causal_strain = [] causal_pango = [] causal_date = [] @@ -1209,9 +1199,9 @@ def plot_mutations_per_node_distribution(self): plt.xlabel("Number of mutations") plt.ylabel("Number of nodes") - def plot_masked_sites_per_sample(self): + def plot_missing_sites_per_sample(self): # plt.title(f"Nodes with >= 10 muts: {nodes_with_many_muts}") - plt.hist(self.nodes_num_masked_sites[self.ts.samples()], rwidth=0.9) + plt.hist(self.nodes_num_missing_sites[self.ts.samples()], rwidth=0.9) # plt.xlabel("Number of mutations") # plt.ylabel("Number of nodes") @@ -1345,10 +1335,10 @@ def plot_mutations_per_site(self, annotate_threshold=0.9): plt.ylabel("Number of mutations") plt.xlabel("Position on genome") - def plot_masked_samples_per_site(self, annotate_threshold=0.5): + def plot_missing_samples_per_site(self, annotate_threshold=0.5): fig, ax = plt.subplots(1, 1, figsize=(16, 4)) self._add_genes_to_axis(ax) - count = self.sites_num_masked_samples + count = self.sites_num_missing_samples pos = self.ts.sites_position ax.plot(pos, count) threshold = np.max(count) * annotate_threshold diff --git a/sc2ts/validation.py b/sc2ts/validation.py index 62f840d..0eee724 100644 --- a/sc2ts/validation.py +++ b/sc2ts/validation.py @@ -20,8 +20,8 @@ def _validate_samples(ts, samples, alignment_store, show_progress): disable=not show_progress, ) as bar: for j, strain in bar: - ma = alignments.encode_and_mask(alignment_store[strain]) - G[:, j] = ma.alignment[keep_sites] + a = alignments.encode_alignment(alignment_store[strain]) + G[:, j] = a[keep_sites] vars_iter = ts.variants(samples=samples, alleles=tuple(core.ALLELES)) with tqdm.tqdm( diff --git a/tests/test_alignments.py b/tests/test_alignments.py index cb6c93d..72cd7c4 100644 --- a/tests/test_alignments.py +++ b/tests/test_alignments.py @@ -96,66 +96,19 @@ def test_encode_real(self, fx_alignment_store): assert a[-1] == -1 -class TestMasking: - # Window size of 1 is weird because we have to have two or more - # ambiguous characters. That means we only filter if something is - # surrounded. - @pytest.mark.parametrize( - ["hap", "expected", "masked"], - [ - ("A", "A", 0), - ("-", "-", 0), - ("-A-", "-N-", 1), - ("NAN", "NNN", 1), - ("---AAC---", "-N-AAC-N-", 2), - ], - ) - def test_examples_w1(self, hap, expected, masked): - hap = np.array(list(hap), dtype="U1") - a = sa.encode_alignment(hap) - expected = np.array(list(expected), dtype="U1") - m = sa.mask_alignment(a, window_size=1) - assert len(m) == masked - assert_array_equal(expected, sa.decode_alignment(a)) - - @pytest.mark.parametrize( - ["hap", "expected", "masked"], - [ - ("A", "A", 0), - ("-", "-", 0), - ("--A--", "-NNN-", 3), - ("---AAAA---", "NNNNAANNNN", 8), - ("NNNAAAANNN", "NNNNAANNNN", 8), - ("-N-AAAA-N-", "NNNNAANNNN", 8), - ], - ) - def test_examples_w2(self, hap, expected, masked): - hap = np.array(list(hap), dtype="U1") - a = sa.encode_alignment(hap) - expected = np.array(list(expected), dtype="U1") - m = sa.mask_alignment(a, window_size=2) - assert len(m) == masked - assert_array_equal(expected, sa.decode_alignment(a)) - - @pytest.mark.parametrize("w", [0, -1, -2]) - def test_bad_window_size(self, w): - a = np.zeros(2, dtype=np.int8) - with pytest.raises(ValueError): - sa.mask_alignment(a, window_size=w) - -class TestEncodeAndMask: - def test_known(self, fx_alignment_store): - a = fx_alignment_store["SRR11772659"] - ma = sa.encode_and_mask(a) - assert ma.original_base_composition == { - "T": 9566, - "A": 8894, - "G": 5850, - "C": 5472, - "N": 121, - } - assert ma.original_md5 == "e96feaa72c4f4baba73c2e147ede7502" - assert len(ma.masked_sites) == 133 - assert ma.masked_sites[0] == 1 - assert ma.masked_sites[-1] == 29903 +# class TestEncodeAndMask: +# def test_known(self, fx_alignment_store): +# a = fx_alignment_store["SRR11772659"] +# ma = sa.encode_and_mask(a) +# assert ma.original_base_composition == { +# "T": 9566, +# "A": 8894, +# "G": 5850, +# "C": 5472, +# "N": 121, +# } +# assert ma.original_md5 == "e96feaa72c4f4baba73c2e147ede7502" +# assert len(ma.masked_sites) == 133 +# assert ma.masked_sites[0] == 1 +# assert ma.masked_sites[-1] == 29903 diff --git a/tests/test_inference.py b/tests/test_inference.py index d619256..009b93e 100644 --- a/tests/test_inference.py +++ b/tests/test_inference.py @@ -34,8 +34,7 @@ def recombinant_example_1(ts_map): h = H[0].copy() h[bp:] = H[1][bp:] - s = sc2ts.Sample("frankentype", "2020-02-14") - s.alignment = h + s = sc2ts.Sample("frankentype", "2020-02-14", haplotype=h) return ts, s @@ -87,11 +86,10 @@ def test_match_reference(self, mirror): tables = ts.dump_tables() tables.sites.truncate(20) ts = tables.tree_sequence() - samples = [sc2ts.Sample("test", "2020-01-01")] alignment = sc2ts.core.get_reference_sequence(as_array=True) - ma = sc2ts.alignments.encode_and_mask(alignment) - h = ma.alignment[ts.sites_position.astype(int)] - samples[0].alignment = h + a = sc2ts.encode_alignment(alignment) + h = a[ts.sites_position.astype(int)] + samples = [sc2ts.Sample("test", "2020-01-01", haplotype=h)] matches = self.match_tsinfer(samples, ts, mirror_coordinates=mirror) assert matches[0].breakpoints == [0, ts.sequence_length] assert matches[0].parents == [ts.num_nodes - 1] @@ -104,13 +102,12 @@ def test_match_reference_one_mutation(self, mirror, site_id): tables = ts.dump_tables() tables.sites.truncate(20) ts = tables.tree_sequence() - samples = [sc2ts.Sample("test", "2020-01-01")] alignment = sc2ts.core.get_reference_sequence(as_array=True) - ma = sc2ts.alignments.encode_and_mask(alignment) - h = ma.alignment[ts.sites_position.astype(int)] + a = sc2ts.encode_alignment(alignment) + h = a[ts.sites_position.astype(int)] + samples = [sc2ts.Sample("test", "2020-01-01", haplotype=h)] # Mutate to gap h[site_id] = sc2ts.core.ALLELES.index("-") - samples[0].alignment = h matches = self.match_tsinfer(samples, ts, mirror_coordinates=mirror) assert matches[0].breakpoints == [0, ts.sequence_length] assert matches[0].parents == [ts.num_nodes - 1] @@ -130,13 +127,11 @@ def test_match_reference_all_same(self, mirror, allele): tables = ts.dump_tables() tables.sites.truncate(20) ts = tables.tree_sequence() - samples = [sc2ts.Sample("test", "2020-01-01")] alignment = sc2ts.core.get_reference_sequence(as_array=True) - alignment = sc2ts.core.get_reference_sequence(as_array=True) - ma = sc2ts.alignments.encode_and_mask(alignment) - ref = ma.alignment[ts.sites_position.astype(int)] + a = sc2ts.encode_alignment(alignment) + ref = a[ts.sites_position.astype(int)] h = np.zeros_like(ref) + allele - samples[0].alignment = h + samples = [sc2ts.Sample("test", "2020-01-01", haplotype=h)] matches = self.match_tsinfer(samples, ts, mirror_coordinates=mirror) assert matches[0].breakpoints == [0, ts.sequence_length] assert matches[0].parents == [ts.num_nodes - 1] @@ -235,8 +230,8 @@ class TestTreeInfo: def test_tree_info_values(self, fx_ts_map): ts = fx_ts_map["2020-02-13"] ti = sc2ts.TreeInfo(ts, show_progress=False) - # Make sure we've got the first few sites removed. - assert list(ti.sites_num_masked_samples[:3]) == [5, 4, 4] + assert list(ti.nodes_num_missing_sites[:5]) == [0, 0, 0, 560, 535] + assert list(ti.sites_num_missing_samples[:5]) == [1, 1, 1, 1, 1] class TestRealData: @@ -301,24 +296,14 @@ def test_first_day(self, tmp_path, fx_ts_map, fx_alignment_store, fx_metadata_db assert mut_md["site_position"] == ts.sites_position[mut.site] assert mut_md["inherited_state"] == ts.site(mut.site).ancestral_state assert hmm_md["path"] == [{"left": 0, "parent": 1, "right": 29904}] - assert sc2ts_md["qc"] == { - "num_masked_sites": 133, - "original_base_composition": { - "A": 8894, - "C": 5472, - "G": 5850, - "N": 121, - "T": 9566, - }, - "original_md5": "e96feaa72c4f4baba73c2e147ede7502", - "masked_base_composition": { - 'A': 8891, - 'C': 5468, - 'G': 5849, - 'T': 9562, - }, + assert sc2ts_md["num_missing_sites"] == 0 + assert sc2ts_md["alignment_composition"] == { + "A": 8820, + "C": 5426, + "G": 5694, + "T": 9477, } - + assert sum(sc2ts_md["alignment_composition"].values()) == ts.num_sites ts.tables.assert_equals(fx_ts_map["2020-01-19"].tables, ignore_provenance=True) def test_2020_02_02(self, tmp_path, fx_ts_map, fx_alignment_store, fx_metadata_db): @@ -335,6 +320,37 @@ def test_2020_02_02(self, tmp_path, fx_ts_map, fx_alignment_store, fx_metadata_d # print(fx_ts_map["2020-02-02"]) ts.tables.assert_equals(fx_ts_map["2020-02-02"].tables, ignore_provenance=True) + @pytest.mark.parametrize("max_samples", range(1, 6)) + def test_2020_02_02_max_samples(self, tmp_path, fx_ts_map, fx_alignment_store, fx_metadata_db, max_samples): + ts = sc2ts.extend( + alignment_store=fx_alignment_store, + metadata_db=fx_metadata_db, + base_ts=fx_ts_map["2020-02-01"], + date="2020-02-02", + max_daily_samples=max_samples, + match_db=sc2ts.MatchDb.initialise(tmp_path / "match.db"), + ) + new_samples = min(4, max_samples) + assert ts.num_samples == 22 + new_samples + assert np.sum(ts.nodes_time[ts.samples()] == 0) == new_samples + + def test_2020_02_02_max_missing_sites(self, tmp_path, fx_ts_map, fx_alignment_store, fx_metadata_db): + max_missing_sites = 2 + ts = sc2ts.extend( + alignment_store=fx_alignment_store, + metadata_db=fx_metadata_db, + base_ts=fx_ts_map["2020-02-01"], + date="2020-02-02", + max_missing_sites=max_missing_sites, + match_db=sc2ts.MatchDb.initialise(tmp_path / "match.db"), + ) + new_samples = 2 + assert ts.num_samples == 22 + new_samples + + assert np.sum(ts.nodes_time[ts.samples()] == 0) == new_samples + for u in ts.samples()[-new_samples:]: + assert ts.node(u).metadata["sc2ts"]["num_missing_sites"] <= max_missing_sites + def test_2020_02_08(self, tmp_path, fx_ts_map, fx_alignment_store, fx_metadata_db): ts = sc2ts.extend( alignment_store=fx_alignment_store, @@ -480,17 +496,17 @@ def test_node_mutation_counts(self, fx_ts_map, date): "2020-01-30": {"nodes": 21, "mutations": 19}, "2020-01-31": {"nodes": 22, "mutations": 21}, "2020-02-01": {"nodes": 27, "mutations": 27}, - "2020-02-02": {"nodes": 32, "mutations": 36}, - "2020-02-03": {"nodes": 35, "mutations": 42}, - "2020-02-04": {"nodes": 40, "mutations": 48}, - "2020-02-05": {"nodes": 41, "mutations": 48}, - "2020-02-06": {"nodes": 46, "mutations": 51}, - "2020-02-07": {"nodes": 48, "mutations": 57}, - "2020-02-08": {"nodes": 53, "mutations": 58}, - "2020-02-09": {"nodes": 55, "mutations": 61}, - "2020-02-10": {"nodes": 56, "mutations": 65}, - "2020-02-11": {"nodes": 58, "mutations": 66}, - "2020-02-13": {"nodes": 62, "mutations": 68}, + "2020-02-02": {"nodes": 32, "mutations": 39}, + "2020-02-03": {"nodes": 35, "mutations": 45}, + "2020-02-04": {"nodes": 40, "mutations": 54}, + "2020-02-05": {"nodes": 41, "mutations": 54}, + "2020-02-06": {"nodes": 46, "mutations": 57}, + "2020-02-07": {"nodes": 48, "mutations": 63}, + "2020-02-08": {"nodes": 53, "mutations": 64}, + "2020-02-09": {"nodes": 55, "mutations": 67}, + "2020-02-10": {"nodes": 56, "mutations": 71}, + "2020-02-11": {"nodes": 58, "mutations": 75}, + "2020-02-13": {"nodes": 62, "mutations": 77}, } assert ts.num_nodes == expected[date]["nodes"] assert ts.num_mutations == expected[date]["mutations"] @@ -732,7 +748,7 @@ def test_recombinant_example_2(self, tmp_path, fx_ts_map, fx_alignment_store): ], } - assert smd["hmm_reruns"] == { } + assert smd["hmm_reruns"] == {} def test_all_As(self, tmp_path, fx_ts_map, fx_alignment_store): # Same as the recombinant_example_1() function above @@ -790,10 +806,11 @@ def test_exact_matches( @pytest.mark.parametrize( ("strain", "parent", "position", "derived_state"), - [("SRR11597218", 9, 289, "T"), ("ERR4206593", 54, 26994, "T")], + [ + ("ERR4206593", 54, 26994, "T"), + ], ) @pytest.mark.parametrize("num_mismatches", [2, 3, 4]) - # @pytest.mark.parametrize("precision", [0, 1, 2, 12]) def test_one_mismatch( self, fx_ts_map, @@ -929,8 +946,7 @@ def test_example_1(self, fx_ts_map): def test_all_As(self, fx_ts_map): ts = fx_ts_map["2020-02-13"] h = np.zeros(ts.num_sites, dtype=np.int8) - s = sc2ts.Sample("zerotype", "2020-02-14") - s.alignment = h + s = sc2ts.Sample("zerotype", "2020-02-14", haplotype=h) sc2ts.match_recombinants( samples=[s],