-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils_network.py
230 lines (184 loc) · 7.3 KB
/
utils_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from torch import Tensor
import torch
import torch.nn.functional as F
import cv2
import numpy as np
import warnings
from tqdm import tqdm
from skimage.metrics import peak_signal_noise_ratio as compare_psnr
from skimage.metrics import structural_similarity as compare_ssim
def calc_psnr(im1, im2): #PSNR of Y channel
im1 = im1[0].view(im1.shape[2],im1.shape[3],3).detach().cpu().numpy()
im2 = im2[0].view(im2.shape[2],im2.shape[3],3).detach().cpu().numpy()
im1_y = cv2.cvtColor(im1, cv2.COLOR_BGR2YCR_CB)[:, :, 0]
im2_y = cv2.cvtColor(im2, cv2.COLOR_BGR2YCR_CB)[:, :, 0]
#ans = [compare_psnr(im1_y, im2_y)]
ans = [compare_psnr(im1_y, im2_y, data_range=1)]
return ans
def calc_ssim(im1, im2):
im1 = im1[0].view(im1.shape[2],im1.shape[3],3).detach().cpu().numpy()
im2 = im2[0].view(im2.shape[2],im2.shape[3],3).detach().cpu().numpy()
im1_y = cv2.cvtColor(im1, cv2.COLOR_BGR2YCR_CB)[:, :, 0]
im2_y = cv2.cvtColor(im2, cv2.COLOR_BGR2YCR_CB)[:, :, 0]
ans = [compare_ssim(im1_y, im2_y)]
return ans
def print_log(*agrs):
print("############################################################")
print(agrs)
print("############################################################")
def calculate_ssim(img1:Tensor, img2:Tensor):
'''calculate SSIM
the same outputs as MATLAB's
img1, img2: [0, 255]
'''
print(img1.dim())
if img1.dim() == 2:
return ssim(img1, img2)
elif img1.dim() == 3:
ssims = []
for i in range(3):
ssims.append(ssim(img1, img2))
return torch.as_tensor(ssims).mean()
else:
raise ValueError('Wrong input image dimensions.')
def _fspecial_gauss_1d(size, sigma):
r"""Create 1-D gauss kernel
Args:
size (int): the size of gauss kernel
sigma (float): sigma of normal distribution
Returns:
torch.Tensor: 1D kernel (1 x 1 x size)
"""
coords = torch.arange(size).to(dtype=torch.float)
coords -= size // 2
g = torch.exp(-(coords ** 2) / (2 * sigma ** 2))
g /= g.sum()
return g.unsqueeze(0).unsqueeze(0)
def gaussian_filter(input, win):
r""" Blur input with 1-D kernel
Args:
input (torch.Tensor): a batch of tensors to be blurred
window (torch.Tensor): 1-D gauss kernel
Returns:
torch.Tensor: blurred tensors
"""
assert all([ws == 1 for ws in win.shape[1:-1]]), win.shape
if len(input.shape) == 4:
conv = F.conv2d
elif len(input.shape) == 5:
conv = F.conv3d
else:
raise NotImplementedError(input.shape)
C = input.shape[1]
out = input
for i, s in enumerate(input.shape[2:]):
if s >= win.shape[-1]:
out = conv(out, weight=win.transpose(2 + i, -1), stride=1, padding=0, groups=C)
else:
warnings.warn(
f"Skipping Gaussian Smoothing at dimension 2+{i} for input: {input.shape} and win size: {win.shape[-1]}"
)
return out
def _ssim(X, Y, data_range, win, size_average=True, K=(0.01, 0.03)):
r""" Calculate ssim index for X and Y
Args:
X (torch.Tensor): images
Y (torch.Tensor): images
win (torch.Tensor): 1-D gauss kernel
data_range (float or int, optional): value range of input images. (usually 1.0 or 255)
size_average (bool, optional): if size_average=True, ssim of all images will be averaged as a scalar
Returns:
torch.Tensor: ssim results.
"""
K1, K2 = K
# batch, channel, [depth,] height, width = X.shape
compensation = 1.0
C1 = (K1 * data_range) ** 2
C2 = (K2 * data_range) ** 2
win = win.to(X.device, dtype=X.dtype)
mu1 = gaussian_filter(X, win)
mu2 = gaussian_filter(Y, win)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = compensation * (gaussian_filter(X * X, win) - mu1_sq)
sigma2_sq = compensation * (gaussian_filter(Y * Y, win) - mu2_sq)
sigma12 = compensation * (gaussian_filter(X * Y, win) - mu1_mu2)
cs_map = (2 * sigma12 + C2) / (sigma1_sq + sigma2_sq + C2) # set alpha=beta=gamma=1
ssim_map = ((2 * mu1_mu2 + C1) / (mu1_sq + mu2_sq + C1)) * cs_map
ssim_per_channel = torch.flatten(ssim_map, 2).mean(-1)
cs = torch.flatten(cs_map, 2).mean(-1)
return ssim_per_channel, cs
def ssim(
X,
Y,
data_range=1.0,
size_average=True,
win_size=11,
win_sigma=1.5,
win=None,
K=(0.01, 0.03),
nonnegative_ssim=False,
):
r""" interface of ssim
Args:
X (torch.Tensor): a batch of images, (N,C,H,W)
Y (torch.Tensor): a batch of images, (N,C,H,W)
data_range (float or int, optional): value range of input images. (usually 1.0 or 255)
size_average (bool, optional): if size_average=True, ssim of all images will be averaged as a scalar
win_size: (int, optional): the size of gauss kernel
win_sigma: (float, optional): sigma of normal distribution
win (torch.Tensor, optional): 1-D gauss kernel. if None, a new kernel will be created according to win_size and win_sigma
K (list or tuple, optional): scalar constants (K1, K2). Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results.
nonnegative_ssim (bool, optional): force the ssim response to be nonnegative with relu
Returns:
torch.Tensor: ssim results
"""
if not X.shape == Y.shape:
raise ValueError("Input images should have the same dimensions.")
for d in range(len(X.shape) - 1, 1, -1):
X = X.squeeze(dim=d)
Y = Y.squeeze(dim=d)
if len(X.shape) not in (4, 5):
raise ValueError(f"Input images should be 4-d or 5-d tensors, but got {X.shape}")
if not X.type() == Y.type():
raise ValueError("Input images should have the same dtype.")
if win is not None: # set win_size
win_size = win.shape[-1]
if not (win_size % 2 == 1):
raise ValueError("Window size should be odd.")
if win is None:
win = _fspecial_gauss_1d(win_size, win_sigma)
win = win.repeat([X.shape[1]] + [1] * (len(X.shape) - 1))
ssim_per_channel, cs = _ssim(X, Y, data_range=data_range, win=win, size_average=False, K=K)
if nonnegative_ssim:
ssim_per_channel = torch.relu(ssim_per_channel)
if size_average:
return ssim_per_channel.mean()
else:
return ssim_per_channel.mean(1)
def validation_train(style_filter, net, val_data_loader, device, exp_name=None, save_tag=False):
psnr_list = []
ssim_list = []
for batch_id, val_data in enumerate(val_data_loader):
with torch.no_grad():
#try:
# input_im, gt, imgid = val_data
#except ValueError:
# input_im, gt= val_data
input_im, gt= val_data
input_im = input_im.to(device)
gt = gt.to(device)
feature_vec = style_filter(input_im)
pred_image = net(input_im, feature_vec)
# --- Calculate the average PSNR --- #
psnr_list.extend(calc_psnr(gt, pred_image.clamp(0,1)))
# --- Calculate the average SSIM --- #
ssim_list.extend(calc_ssim(gt, pred_image.clamp(0,1)))
# --- Save image --- #
if save_tag:
# print()
save_image(pred_image, imgid, exp_name)
avr_psnr = sum(psnr_list) / len(psnr_list)
avr_ssim = sum(ssim_list) / len(ssim_list)
return avr_psnr, avr_ssim