-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis_kalman_coint.py
executable file
·218 lines (169 loc) · 7.47 KB
/
analysis_kalman_coint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import logging
import os.path # To manage paths
import sys # To find out the script name (in argv[0])
import argparse
import backtrader as bt
import dontbuffer
import backtrader.analyzers as btanalyzers
import pandas as pd
import numpy as np
import time
import scipy.stats as stats
import pickle
import logging
#import copy
import configparser
from pprint import pprint, pformat
from sklearn.preprocessing import MinMaxScaler
from sklearn.decomposition import PCA
from os import listdir
from os.path import isfile, join
import pickle
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
import scipy.stats as stats
import math
from statsmodels.tsa.stattools import coint
from backfill_data import batch_backfill, separate_bid_ask_midpoint
from pykalman import KalmanFilter
from statsmodels.tsa.stattools import coint
from statsmodels.tsa.seasonal import seasonal_decompose
def parse_args():
parser = argparse.ArgumentParser(
description='Bid/Ask Line Hierarchy',
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument('--clear', '-c', action='store_true',
required=False, default=False, help='clear cache')
parser.add_argument('--days', '-d', action='store',
required=False, default=365, help='# of days to correlate')
parser.add_argument('--resample', '-r', action='store',
required=False, default="1H", help='resample to period (default: 1H)')
return parser.parse_args()
def kfilter(df):
kf = KalmanFilter(transition_matrices = [1],
observation_matrices = [1],
initial_state_mean = 0,
initial_state_covariance = 1,
observation_covariance=1,
transition_covariance=.01)
state_means, _ = kf.filter(df)
state_means = pd.Series(state_means.flatten(), index=df.index)
return state_means
def get_correlations(df, which_columns=[], save_csv=None, append=False):
cols_to_correlate = df[ which_columns ].dropna(how="any")
spearman_correlation = cols_to_correlate.corr(method="spearman")
if(save_csv is not None):
#spearman_correlation.to_csv(save_csv)
with open(save_csv, 'a' if(append) else 'w') as f:
spearman_correlation.to_csv(f)
return spearman_correlation
if __name__ == '__main__':
# logging.basicConfig(level=logging.CRITICAL, format='[%(levelname)s] %(asctime)s %(message)s', datefmt="%H:%M:%S")
logging.basicConfig(level=logging.INFO, format='[%(levelname)s] %(asctime)s %(message)s', datefmt="%H:%M:%S")
args = parse_args()
pairs = ["EUR_USD", "USD_JPY", "GBP_USD","AUD_USD","USD_CHF","USD_CAD","EUR_JPY","EUR_GBP"]
df=None
since_when = datetime.now() - timedelta(days=int(args.days))
logging.info("Correlating for {} days".format(args.days))
try:
os.makedirs("analysis/")
except FileExistsError:
pass
df_fname = "analysis/kfiltered-{}-days-before-{}.pkl".format(args.days, datetime.today().strftime('%Y-%m-%d'))
if(args.clear):
logging.info("Clearing {}".format(df_fname))
try:
os.remove(df_fname)
except FileNotFoundError:
pass
if (os.path.exists(df_fname) and os.stat(df_fname).st_size > 0 ):
logging.info("Getting cached data")
df = pd.read_pickle(df_fname)
else:
how_ohlc={
'open':'first',
'high':'max',
'low' :'min',
'close': 'last',
'volume': 'sum'
}
for p in pairs:
logging.info("Fetchin data for {} and resampling to {}".format(p, args.resample))
#print(batch_backfill(p, since_when = datetime.now() - timedelta(days=1), is_practice=False))
# print(since_when)
# sys.exit(1)
ask,bid,midpoint = batch_backfill(p, since_when = since_when)
# print(ask.head())
# print(bid.head())
# print(midpoint.head())
# input(">")
ask = ask.resample(args.resample).agg(how_ohlc)
bid = bid.resample(args.resample).agg(how_ohlc)
midpoint = midpoint.resample(args.resample).agg(how_ohlc)
#print((bid["close"] - ask["close"]).head())
# print((bid["close"] ).head())
# print((ask["close"]).head())
# input(">")
# midpoint["{}-BA_spread".format(p)] = ask["close"] - bid["close"]
# midpoint["{}-HL_spread".format(p)] = midpoint["high"] - midpoint["low"]
# midpoint["{}-volume".format(p)] = midpoint["volume"]
# midpoint["{}-volatility".format(p)] = midpoint["close"].rolling(window=5).std()
# midpoint["{}-close".format(p)] = midpoint["close"]
midpoint["{}-kfilter".format(p)] = kfilter(midpoint["close"])
# print(midpoint.isnull().values.any())
midpoint.dropna(inplace=True)
# print(midpoint["close"].head())
decomposition = seasonal_decompose(midpoint["close"])
midpoint["{}-trend".format(p)] = decomposition.trend
midpoint["{}-seasonal".format(p)] = decomposition.seasonal
midpoint["{}-residual".format(p)] = decomposition.resid
# midpoint["{}-close-delta".format(p)] = midpoint["close"].diff()
# midpoint["{}-close-pct".format(p)] = midpoint["close"].pct_change()
midpoint.rename(columns={
"open" : "{}-open".format(p),
"high" : "{}-high".format(p),
"low" : "{}-low".format(p),
"close" : "{}-close".format(p),
"volume": "{}-volume".format(p)
}, inplace=True)
if (df is None):
df = midpoint
else:
df = df.join(midpoint, how="outer")
# df.drop_duplicates(keep='last', inplace=True)
currency_csv = "all_columns-{}.csv".format(p)
midpoint.to_csv(currency_csv)
print(currency_csv)
logging.info("Writing analysis to file {}".format(df_fname))
df.to_pickle(df_fname)
df.dropna(inplace=True)
# print(df.head())
# df[[c for c in df.columns if c.endswith('kfilter')]].plot()
# plt.show()
coint_heatmap = [[coint( df["{}-residual".format(x)],df["{}-residual".format(y)])[1] for x in pairs] for y in pairs]
# pprint(coint_heatmap)
A = coint_heatmap
print('\n'.join(['\t'.join(["%0.3f" % item for item in row]) for row in A]))
# coint_heatmap = [[coint( df["{}-close".format(x)],df["{}-close".format(y)] ) [1] for x in pairs] for y in pairs]
# pprint(coint_heatmap)
# print(df["EUR_USD-close"].head())
# decomposition = seasonal_decompose(df["EUR_USD-close"])
# trend = decomposition.trend
# seasonal = decomposition.seasonal
# residual = decomposition.resid
# plt.subplot(411)
# plt.plot(df["EUR_USD-close"], label='Original')
# plt.legend(loc='best')
# plt.subplot(412)
# plt.plot(trend, label='Trend')
# plt.legend(loc='best')
# plt.subplot(413)
# plt.plot(seasonal,label='Seasonality')
# plt.legend(loc='best')
# plt.subplot(414)
# plt.plot(residual, label='Residuals')
# plt.legend(loc='best')
# plt.tight_layout()
# plt.show()