-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpopularity_batch.py
66 lines (50 loc) · 1.82 KB
/
popularity_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import mesa
from strategic_voting import VotingModel
import pprint
import pandas as pd
from statistics import mean
import matplotlib.pyplot as plt
import numpy as np
width = 100
steps = 50
iters = 200
params = {"width": width}
results = mesa.batch_run(
VotingModel,
parameters=params,
max_steps=steps,
iterations=iters,
data_collection_period=1,
number_processes=8,
)
#print(len(results))
#pprint.pprint(results, sort_dicts=False)
#results_df = pd.DataFrame(results)
#print(results_df)
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
results = list(chunks(results, steps+1))
#pprint.pprint(results[1][-1], sort_dicts=False)
#print(results[0][0].values())
#print(list(results[0][0].values())[4:15])
#print(list(results[0][0].values())[4])
#print(list(results[0][0].values())[14])
#for k in results[0]:
# print(list(k.values())[4:15])
#for i in results:
# for k in i:
# print(list(k.values())[4:15])
results = [result for result in results
if sum(list(result[-1].values())[4:9]) > sum(list(result[-1].values())[10:15])]
ith_steps = lambda i : [list(result[i].values())[4:15] for result in results]
means_of_steps = [[mean(x) for x in zip(*ith_steps(i))] for i in range(steps+1)]
pop_evos = np.matrix(means_of_steps).T
names = ["E", "D", "C", "B", "A", "O", "A'", "B'", "C'", "D'", "E'"]
colors = [(250, 187, 187), (250, 135, 135), (252, 101, 101), (250, 52, 52), (250, 15, 15), (0, 0, 0),
(15, 39, 250), (77, 95, 250), (130, 142, 250), (174, 182, 252), (214, 218, 255)]
colors = [(e[0] / 255.0, e[1] / 255.0, e[2] / 255.0) for e in colors]
for i in range(len(names)):
plt.plot(pop_evos[i].T, color=colors[i])
plt.savefig(f"radius4/pops/pop-width{str(width)}.svg")