forked from Project-MONAI/MONAILabel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.cfg
178 lines (166 loc) · 5.75 KB
/
setup.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
[metadata]
name = monailabel
author = MONAI Consortium
author_email = [email protected]
url = https://monai.io/
description = Active Learning Toolkit for Healthcare Imaging
long_description = file:README.md
long_description_content_type = text/markdown; charset=UTF-8
platforms = OS Independent
license = Apache License 2.0
license_files =
LICENSE
project_urls =
Documentation=https://docs.monai.io/
Bug Tracker=https://github.com/Project-MONAI/MONAILabel/issues
Source Code=https://github.com/Project-MONAI/MONAILabel
[options]
python_requires = >= 3.8
# for compiling and develop setup only
# no need to specify the versions so that we could
# compile for multiple targeted versions.
setup_requires =
torch
ninja
install_requires =
monai[nibabel, skimage, pillow, tensorboard, gdown, ignite, torchvision, itk, tqdm, lmdb, psutil, openslide, fire, mlflow]>=1.3.1
uvicorn>=0.29.0
pydantic>=2.7.0
pydantic-settings>=2.2.1
python-dotenv>=1.0.1
fastapi>=0.110.2
python-multipart>=0.0.9
httpx>=0.27.0
schedule>=1.2.1
dicomweb-client[gcp]>=0.59.1
timeloop>=1.0.2
expiringdict>=1.2.2
expiring_dict>=1.1.0
cachetools>=5.3.3
watchdog>=4.0.0
pydicom>=2.4.4
pydicom-seg>=0.4.1
pynetdicom>=2.0.2
pynrrd>=1.0.0
numpymaxflow>=0.0.6
girder-client>=3.2.3
ninja>=1.11.1.1
einops>=0.7.0
pyyaml>=6.0.1
filelock>=3.11.0
passlib>=1.7.4
pyjwt>=2.8.0
bcrypt>=4.1.2
shapely>=2.0.4
requests>=2.31.0
requests-toolbelt>=1.0.0
urllib3>=2.2.1
scikit-learn
scipy
google-auth>=2.29.0
[flake8]
select = B,C,E,F,N,P,T4,W,B9
max_line_length = 120
# F403 'from module import *' used; unable to detect undefined names
# F405 Name may be undefined, or defined from star import
# E203 whitespace before ':' # incompatible with black style
# E402 module level import not at top of file
# E501 is not flexible enough, we're using B950 instead
# E722 do not use bare 'except'
# C408 ignored because we like the dict keyword argument syntax
# W503 line break before binary operator
ignore =
E203,E302,E303,E305,E402,E501,E721,E722,E741,F403,F405,F821,F841,F999,C408,W291,W503,W504,B008,
# N812 lowercase 'torch.nn.functional' imported as non lowercase 'F'
N812,N818
per_file_ignores = __init__.py: F401
exclude = *.pyi,.git,.eggs,monailabel/_version.py,versioneer.py,venv,.venv,_version.py,slicer,config.py,plugins/ohif
[isort]
known_first_party = monailabel
profile = black
line_length = 120
skip = .git, .eggs, venv, .venv, versioneer.py, _version.py, conf.py, monailabel/__init__.py, plugins/ohif
skip_glob = *.pyi
[versioneer]
VCS = git
style = pep440
versionfile_source = monailabel/_version.py
versionfile_build = monailabel/_version.py
tag_prefix =
parentdir_prefix =
[mypy]
# Suppresses error messages about imports that cannot be resolved.
ignore_missing_imports = True
# Changes the treatment of arguments with a default value of None by not implicitly making their type Optional.
no_implicit_optional = True
# Warns about casting an expression to its inferred type.
warn_redundant_casts = True
# No error on unneeded # type: ignore comments.
warn_unused_ignores = False
# Shows a warning when returning a value with type Any from a function declared with a non-Any return type.
warn_return_any = True
# Prohibit equality checks, identity checks, and container checks between non-overlapping types.
strict_equality = True
# Shows column numbers in error messages.
show_column_numbers = True
# Shows error codes in error messages.
show_error_codes = True
# Use visually nicer output in error messages: use soft word wrap, show source code snippets, and show error location markers.
pretty = False
# list of files or directories to exclude.
exclude = (plugins|docs|model|tests)
[mypy-versioneer]
# Ignores all non-fatal errors.
ignore_errors = True
[mypy-monailabel._version]
# Ignores all non-fatal errors.
ignore_errors = True
[mypy-monailabel.eggs]
# Ignores all non-fatal errors.
ignore_errors = True
[pytype]
# Space-separated list of files or directories to exclude.
exclude = versioneer.py _version.py scripts plugins
# Space-separated list of files or directories to process.
inputs = monailabel
# Keep going past errors to analyze as many files as possible.
keep_going = True
# Run N jobs in parallel.
jobs = 8
# All pytype output goes here.
output = .pytype
# Paths to source code directories, separated by ':'.
pythonpath = .
# Check attribute values against their annotations.
check_attribute_types = True
# Check container mutations against their annotations.
check_container_types = True
# Check parameter defaults and assignments against their annotations.
check_parameter_types = True
# Check variable values against their annotations.
check_variable_types = True
# Comma or space separated list of error names to ignore.
disable = pyi-error
# Report errors.
report_errors = True
# Experimental: Infer precise return types even for invalid function calls.
precise_return = True
# Experimental: solve unknown types to label with structural types.
protocols = True
# Experimental: Only load submodules that are explicitly imported.
strict_import = False
[coverage:run]
omit =
monailabel/_version.py
monailabel/__init__.py
setup.py