-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreplace.py
74 lines (64 loc) · 2.04 KB
/
replace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import pandas as pd
import numpy as np
def rep(dataframe, col, choice, value):
"Tells about all the rows with which has an empty value for a particular column with an option to add / alter the values indicating empty values eg . NULL , NaN , , unknown etc and also allows a person to replace a given value choice is used to tell your choice whether to replace the value or not , value to enter a value you want to replace it with "
a = []
print '****'
maintainchar = ['unknown', 'Unknown', 'Null', 'null', '', '\0', np.nan]
maintainint = [np.nan]
count = 0
k = -1
reg = 0
###print 'Do you want to replace value with something '
##choice = True ## input choice here
##value=0 ## Enter the value here
if(choice==False):
if (dataframe[col].dtype == 'object'):
##print '1'
##dataframe[col].fillna(value, inplace=True)
for i in dataframe[col].tolist():
count=count+1
if (i in maintainchar or i==np.nan):
print 'Record No ', count, 'has a problem'
reg = reg + 1
else:
##dataframe[col].fillna(value, inplace=True)
for i in np.asarray(dataframe[col].tolist()):
count = count + 1
##print '4',i
if (i in maintainint or np.isnan(i)):
print 'Record No ', count, 'has a problem'
reg = reg + 1
return reg
else:
li = []
##dataframe[col].fillna(value,inplace=True)
if (dataframe[col].dtype == 'object'):
for i in dataframe[col].tolist():
##k=k+1
##print '2'
count = count + 1
if (i in maintainchar):
print 'Record No ', count, 'has a problem'
li.append(value)
##dataframe.iloc[k][col] = value
reg = reg + 1
else:
li.append(i)
else:
li = []
##dataframe[col].fillna(value, inplace=True)
sd = np.asarray(dataframe[col].tolist())
for i in sd:
count = count + 1
##print i
##k = k + 1
if (i in maintainint or np.isnan(i)):
print 'Record No ', count, 'has a problem'
##dataframe.loc[k,col] = value
li.append(value)
reg = reg + 1
else:
li.append(i)
dataframe[col].update(pd.Series(li))
return dataframe