-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmodel.py
73 lines (56 loc) · 1.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch.nn as nn
import torch
def conv3x3(in_planes, out_planes):
return nn.Sequential(
nn.Conv2d(in_planes, out_planes, 3, 1, 1),
nn.BatchNorm2d(out_planes),
nn.ReLU(inplace=True),
nn.Conv2d(out_planes, out_planes, 3, 1, 1),
nn.BatchNorm2d(out_planes),
nn.ReLU(inplace=True))
class Model(nn.Module):
def __init__(self):
n, m = 24, 3
super(Model, self).__init__()
self.relu = nn.ReLU(inplace=True)
self.sigmoid = nn.Sigmoid()
self.upsample = nn.UpsamplingBilinear2d(scale_factor=2)
self.maxpool = nn.MaxPool2d(2, 2)
self.convd1 = conv3x3(1*m, 1*n)
self.convd2 = conv3x3(1*n, 2*n)
self.convd3 = conv3x3(2*n, 4*n)
self.convd4 = conv3x3(4*n, 4*n)
self.convu3 = conv3x3(8*n, 4*n)
self.convu2 = conv3x3(6*n, 2*n)
self.convu1 = conv3x3(3*n, 1*n)
self.convu0 = nn.Conv2d(n, 1, 3, 1, 1)
def forward(self, x):
x1 = x
x1 = self.convd1(x1)
# print(x1.size())
x2 = self.maxpool(x1)
x2 = self.convd2(x2)
# print(x2.size())
x3 = self.maxpool(x2)
x3 = self.convd3(x3)
# print(x3.size())
x4 = self.maxpool(x3)
x4 = self.convd4(x4)
# print(x4.size())
y3 = self.upsample(x4)
y3 = torch.cat([x3, y3], 1)
y3 = self.convu3(y3)
# print(y3.size())
y2 = self.upsample(y3)
y2 = torch.cat([x2, y2], 1)
y2 = self.convu2(y2)
# print(y2.size())
y1 = self.upsample(y2)
y1 = torch.cat([x1, y1], 1)
y1 = self.convu1(y1)
# print(y1.size())
y1 = self.convu0(y1)
y1 = self.sigmoid(y1)
# print(y1.size())
# exit(0)
return y1