-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmyknn.py
138 lines (127 loc) · 5.78 KB
/
myknn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 14 21:18:29 2019
@author: wmy
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import multiprocessing
from sklearn.impute import SimpleImputer
from category_encoders.leave_one_out import LeaveOneOutEncoder
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import roc_auc_score
import gc
from sklearn.model_selection import train_test_split
from scipy.stats import norm, rankdata
test = pd.read_csv('/gpfs/home/mw15m/santander-customer-transaction-prediction/test.csv')
train = pd.read_csv('/gpfs/home/mw15m/santander-customer-transaction-prediction/train.csv')
target=train['target']
features=[c for c in train.columns.tolist() if c not in ['ID_code', 'target']]
ID_code=train['ID_code'].values
#a,_=train_test_split(train,train_size =0.2,shuffle =True,stratify =target ,random_state =4950)
def augment(x,y,t=2):
xs,xn = [],[]
for i in range(t):
mask = y>0
x1 = x[mask].copy()
ids = np.arange(x1.shape[0])
for c in range(x1.shape[1]):
np.random.shuffle(ids)
x1[:,c] = x1[ids][:,c]
xs.append(x1)
for i in range(t//2):
mask = y==0
x1 = x[mask].copy()
ids = np.arange(x1.shape[0])
for c in range(x1.shape[1]):
np.random.shuffle(ids)
x1[:,c] = x1[ids][:,c]
xn.append(x1)
xs = np.vstack(xs)
xn = np.vstack(xn)
ys = np.ones(xs.shape[0])
yn = np.zeros(xn.shape[0])
x = np.vstack([x,xs,xn])
y = np.concatenate([y,ys,yn])
return x,y
def createfeature(dataset1,dataset2):
for col in dataset1.columns:
# Normalize the data, so that it can be used in norm.cdf(),
# as though it is a standard normal variable
# dataset[col] = ((dataset[col] - dataset[col].mean())
# / dataset[col].std()).astype('float32')
#first order interaction
# for c in dataset1.columns[i+1:]:
# dataset1[col+'*'+c] = dataset1[col].values*dataset1[c].values
# dataset2[col+'*'+c] = dataset2[col].values*dataset2[c].values
# Square
dataset1[col+'^2'] = dataset1[col].values **2
dataset2[col+'^2'] = dataset2[col].values **2
# Cube
dataset1[col+'^3'] = dataset1[col].values **3
dataset2[col+'^3'] = dataset2[col].values **3
# 4th power
dataset1[col+'^4'] = dataset1[col].values **4
dataset2[col+'^4'] = dataset2[col].values **4
# Cumulative percentile (not normalized)
temp=rankdata(pd.concat([dataset1[col],dataset2[col]],axis=0)).astype('float32')
dataset1[col+'_cp'] =temp[:len(dataset1)]
dataset2[col+'_cp'] =temp[len(dataset1):]
del temp
gc.collect()
# dataset[col+'_cp'] = rankdata(dataset[col]).astype('float32')
# Cumulative normal percentile
dataset1[col+'_cnp'] = norm.cdf(dataset1[col],dataset1[col].mean(),dataset1[col].std()).astype('float32')
dataset2[col+'_cnp'] = norm.cdf(dataset2[col],dataset1[col].mean(),dataset1[col].std()).astype('float32')
return dataset1,dataset2
train,test=createfeature(train[features],test[features])
used_features=[c for c in train.columns.tolist() if c not in ['ID_code', 'target']]
ss=StandardScaler()
train=pd.DataFrame(ss.fit_transform(train[used_features]),columns=used_features)
test=pd.DataFrame(ss.transform(test[used_features]),columns=used_features)
folds = StratifiedKFold(n_splits=15, shuffle=True, random_state=4590)
oof = np.zeros(len(train))
predictions = np.zeros(len(test))
feature_importance_df = pd.DataFrame()
#t0 = time.time()
for fold_, (trn_idx, val_idx) in enumerate(folds.split(train,target)):
print("fold n°{}".format(fold_))
train_x=train.iloc[trn_idx].reset_index(drop=True)
valid_x=train.iloc[val_idx].reset_index(drop=True)
target_train=target.iloc[trn_idx].reset_index(drop=True)
target_valid=target.iloc[val_idx].reset_index(drop=True)
# model = KNeighborsClassifier(n_neighbors=100, leaf_size=3000, p=2, n_jobs=-1)
# model.fit(train_x[features],target_train)
#
# oof[val_idx] = model.predict_proba(valid_x[features])[:,1]
#
# predictions += model.predict_proba(test[features])[:,1] / folds.n_splits
#===============================
N = 5
p_valid,yp = 0,0
for i in range(N):
X_t, y_t = augment(train_x[used_features].values, target_train.values)
X_t = pd.DataFrame(X_t)
X_t = X_t.add_prefix('var_')
model = KNeighborsClassifier(n_neighbors=200, leaf_size=6000, p=2, n_jobs=-1)
model.fit(X_t,y_t)
oof[val_idx] += model.predict_proba(valid_x[used_features])[:,1]/N
predictions += model.predict_proba(test[used_features])[:,1] / (folds.n_splits*N)
print('AUC Score: {}'.format(roc_auc_score(target,oof)))
#t1 = time.time()
#print('time: {}'.format(t1-t0))
df_test = pd.read_csv('/gpfs/home/mw15m/santander-customer-transaction-prediction/sample_submission.csv')
df_test['target'] = predictions
df_test.to_csv('/gpfs/home/mw15m/santander-customer-transaction-prediction/sub_myknn_aug_moref_15cv_200neigb_{}_test.csv'.format(roc_auc_score(target,oof)), index=False)
df_train= pd.DataFrame({"ID_code":ID_code})
df_train['M_knn']=oof
df_train.to_csv('/gpfs/home/mw15m/santander-customer-transaction-prediction/sub_myknn_aug_moref_15cv_200neigb_train.csv', index=False)