-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathGuessNumberHigherOrLowerII.py
63 lines (58 loc) · 3.74 KB
/
GuessNumberHigherOrLowerII.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# -*- coding: utf-8 -*-
# @File : GuessNumberHigherOrLowerII.py
# @Date : 2022-07-11
# @Author : tc
"""
375. 猜数字大小 II
我们正在玩一个猜数游戏,游戏规则如下:
我从 1 到 n 之间选择一个数字。
你来猜我选了哪个数字。
如果你猜到正确的数字,就会 赢得游戏 。
如果你猜错了,那么我会告诉你,我选的数字比你的 更大或者更小 ,并且你需要继续猜数。
每当你猜了数字 x 并且猜错了的时候,你需要支付金额为 x 的现金。如果你花光了钱,就会 输掉游戏 。
给你一个特定的数字 n ,返回能够 确保你获胜 的最小现金数,不管我选择那个数字 。
示例 1:
输入:n = 10
输出:16
解释:制胜策略如下:
- 数字范围是 [1,10] 。你先猜测数字为 7 。
- 如果这是我选中的数字,你的总费用为 $0 。否则,你需要支付 $7 。
- 如果我的数字更大,则下一步需要猜测的数字范围是 [8,10] 。你可以猜测数字为 9 。
- 如果这是我选中的数字,你的总费用为 $7 。否则,你需要支付 $9 。
- 如果我的数字更大,那么这个数字一定是 10 。你猜测数字为 10 并赢得游戏,总费用为 $7 + $9 = $16 。
- 如果我的数字更小,那么这个数字一定是 8 。你猜测数字为 8 并赢得游戏,总费用为 $7 + $9 = $16 。
- 如果我的数字更小,则下一步需要猜测的数字范围是 [1,6] 。你可以猜测数字为 3 。
- 如果这是我选中的数字,你的总费用为 $7 。否则,你需要支付 $3 。
- 如果我的数字更大,则下一步需要猜测的数字范围是 [4,6] 。你可以猜测数字为 5 。
- 如果这是我选中的数字,你的总费用为 $7 + $3 = $10 。否则,你需要支付 $5 。
- 如果我的数字更大,那么这个数字一定是 6 。你猜测数字为 6 并赢得游戏,总费用为 $7 + $3 + $5 = $15 。
- 如果我的数字更小,那么这个数字一定是 4 。你猜测数字为 4 并赢得游戏,总费用为 $7 + $3 + $5 = $15 。
- 如果我的数字更小,则下一步需要猜测的数字范围是 [1,2] 。你可以猜测数字为 1 。
- 如果这是我选中的数字,你的总费用为 $7 + $3 = $10 。否则,你需要支付 $1 。
- 如果我的数字更大,那么这个数字一定是 2 。你猜测数字为 2 并赢得游戏,总费用为 $7 + $3 + $1 = $11 。
在最糟糕的情况下,你需要支付 $16 。因此,你只需要 $16 就可以确保自己赢得游戏。
示例 2:
输入:n = 1
输出:0
解释:只有一个可能的数字,所以你可以直接猜 1 并赢得游戏,无需支付任何费用。
示例 3:
输入:n = 2
输出:1
解释:有两个可能的数字 1 和 2 。
- 你可以先猜 1 。
- 如果这是我选中的数字,你的总费用为 $0 。否则,你需要支付 $1 。
- 如果我的数字更大,那么这个数字一定是 2 。你猜测数字为 2 并赢得游戏,总费用为 $1 。
最糟糕的情况下,你需要支付 $1 。
dp[i][j]表示选中的数在 [i,j] 之间时能够确保获胜需要备用的现金数;
https://leetcode.cn/problems/guess-number-higher-or-lower-ii/solution/tong-ge-lai-shua-ti-la-yi-ti-san-jie-bao-t4od/
"""
class Solution:
def getMoneyAmount(self, n: int) -> int:
dp = [[0] * (n + 2) for i in range(n + 2)]
for length in range(2, n+1):
for i in range(1, n - length + 2):
j = i + length - 1
dp[i][j] = float(inf)
for k in range(i, j + 1):
dp[i][j] = min(dp[i][j], k + max(dp[i][k-1], dp[k+1][j]))
return dp[1][n]