-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathSPHORB.cpp
901 lines (787 loc) · 31.5 KB
/
SPHORB.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
/*
AUTHOR:
Qiang Zhao, email: [email protected]
Copyright (C) 2015 Tianjin University
School of Computer Software
School of Computer Science and Technology
LICENSE:
SPHORB is distributed under the GNU General Public License. For information on
commercial licensing, please contact the authors at the contact address below.
REFERENCE:
@article{zhao-SPHORB,
author = {Qiang Zhao and Wei Feng and Liang Wan and Jiawan Zhang},
title = {SPHORB: A Fast and Robust Binary Feature on the Sphere},
journal = {International Journal of Computer Vision},
year = {2015},
volume = {113},
number = {2},
pages = {143-159},
}
*/
#include <algorithm>
#include <iterator>
#include "SPHORB.h"
#include "pfm.h"
#include "detector.h"
#define MAX_PATH 256
namespace cv
{
std::vector<float*> geoinfos;
std::vector<Mat> maskes;
std::vector<vector<float*> > imgInfos;
const int cells[] = {256, 204, 162, 128, 102, 80, 64};
int levels;
// load the precomputed information
static void initSORB()
{
levels = sizeof(cells) / sizeof(cells[0]);
for (int i=0;i<levels;i++)
{
// geodesic grid coordinate with different resolution
char fileName[MAX_PATH];
sprintf(fileName, "Data/geoinfo%d.pfm", cells[i]);
float* geoinfo = new float[(cells[i]+1)*(2*cells[i]+1)*3];
read_pfm(fileName, geoinfo);
geoinfos.push_back(geoinfo);
// look up table for fast image convertion from spherical image to geodesic grid
vector<float*> partInfos;
for (int j=0;j<5;j++)
{
sprintf(fileName, "Data/imginfo%d_%d.pfm", cells[i], j);
int num = (2*cells[i]+1)*(cells[i]+1)*4;
num = static_cast<int>(ceil(num / 3.0)) * 3;
float* partinfo = new float[num];
read_pfm(fileName, partinfo);
partInfos.push_back(partinfo);
}
imgInfos.push_back(partInfos);
// the mask image
sprintf(fileName, "Data/mask%d.bmp", cells[i]);
Mat mask = imread(fileName, 0);
maskes.push_back(mask);
}
}
static void uninitSORB()
{
for (size_t i=0;i<geoinfos.size();i++)
{
if (geoinfos[i]!=NULL)
{
delete[] geoinfos[i];
geoinfos[i] = NULL;
}
}
for (size_t i=0;i<imgInfos.size();i++)
{
for (size_t j=0;j<imgInfos[i].size();j++)
{
if (imgInfos[i][j]!=NULL)
{
delete [] imgInfos[i][j];
imgInfos[i][j] = NULL;
}
}
}
geoinfos.clear();
imgInfos.clear();
maskes.clear();
}
// split spherical image to the storage grid
static void splitSphere2(const Mat& im, Mat& oim, int idx, const float* imgInfo)
{
for(int y=0; y<oim.rows; y++)
{
for(int x=0; x<oim.cols; x++)
{
float lx = imgInfo[(x+y*oim.cols)*4];
float ly = imgInfo[(x+y*oim.cols)*4+1];
float wh = imgInfo[(x+y*oim.cols)*4+2];
float wv = imgInfo[(x+y*oim.cols)*4+3];
int ix = static_cast<int>(lx);
int iy = static_cast<int>(ly);
uchar v1 = im.at<uchar>(iy, ix);
uchar v2 = im.at<uchar>(iy, (ix+1)%im.cols);
uchar v3 = im.at<uchar>(iy+1, ix);
uchar v4 = im.at<uchar>(iy+1, (ix+1)%im.cols);
float v12 = v1*wh + v2*(1-wh);
float v34 = v3*wh + v4*(1-wh);
oim.at<uchar>(y, x) = uchar(v12*wv + v34*(1-wv));
}
}
}
// extend the storage grid from top and right boundary
static void extendTopRight(Mat& newPart1, const Mat& part2, int edge)
{
int h = part2.rows;
int w = part2.cols;
int r, c;
r = edge;
for(c=edge-1; c<h+edge-1; c++)
{
int c0 = c-edge+1;
int rn = c0;
int cn = 0;
for(int i=1;i<=edge;i++)
{
rn--;
cn++;
if(rn>=0)
newPart1.at<uchar>(r-i, c) = part2.at<uchar>(rn, cn);
else
break;
}
}
for(c=h+edge-1; c<w+edge-1; c++)
{
int c0 = c-edge+1;
int rn=h-1;
int cn = c0-h+1;
for(int i=1;i<=edge;i++)
{
rn--;
if(rn+cn>=h-1)
newPart1.at<uchar>(r-i, c) = part2.at<uchar>(rn, cn);
else
break;
}
}
c = w+edge-2;
for(r=edge;r<h+edge;r++)
{
int r0 = r-edge;
int rn = h-1;
int cn = r0+h-1;
for(int i=1;i<=edge;i++)
{
rn--;
cn++;
if(cn<2*h-1)
newPart1.at<uchar>(r, c+i) = part2.at<uchar>(rn, cn);
else
break;
}
}
}
// extend the storage grid from left and bottom boundary
static void extendBottomLeft(Mat& newPart1, const Mat& part2, int edge)
{
int h = part2.rows;
int w = part2.cols;
int r, c;
c = edge-1;
for(r=edge; r<h+edge; r++)
{
int r0 = r-edge;
int c0 = c-edge+1;
int rn = c0;
int cn = r0;
for(int i=1;i<=edge-1;i++)
{
rn++;
cn--;
if(cn>=0)
newPart1.at<uchar>(r, c-i) = part2.at<uchar>(rn, cn);
else
break;
}
}
r = h+edge-1;
for(c=edge-1; c<h+edge-2; c++)
{
int c0 = c-edge+1;
int rn = 0;
int cn = c0+h-1;
for(int i=1;i<=edge-1;i++)
{
rn++;
if(rn+cn<=2*h-2)
newPart1.at<uchar>(r+i, c) = part2.at<uchar>(rn, cn);
else
break;
}
}
for(c=h+edge-2;c<w+edge-1;c++)
{
int c0 = c-edge+1;
int rn = c0-h+1;
int cn = 2*h-2;
for(int i=1;i<=edge-1;i++)
{
rn++;
cn--;
if(rn<h)
newPart1.at<uchar>(r+i, c) = part2.at<uchar>(rn, cn);
else
break;
}
}
}
// extend the storage grid
static void extendEdge(Mat& part0, Mat& part1, Mat& part2, Mat& part3, Mat& part4, int edge)
{
int height = part0.rows + edge*2 - 1;
int width = part0.cols + edge*2 - 1;
// extend the image size
Mat _part0 = Mat::zeros(Size(width, height), part0.type());
Mat _part1 = Mat::zeros(Size(width, height), part1.type());
Mat _part2 = Mat::zeros(Size(width, height), part2.type());
Mat _part3 = Mat::zeros(Size(width, height), part3.type());
Mat _part4 = Mat::zeros(Size(width, height), part4.type());
// copy the source data
for (int y=edge; y<height-edge+1; y++)
{
for (int x=edge-1; x<width-edge; x++)
{
_part0.at<uchar>(y,x) = part0.at<uchar>(y-edge, x-edge+1);
_part1.at<uchar>(y,x) = part1.at<uchar>(y-edge, x-edge+1);
_part2.at<uchar>(y,x) = part2.at<uchar>(y-edge, x-edge+1);
_part3.at<uchar>(y,x) = part3.at<uchar>(y-edge, x-edge+1);
_part4.at<uchar>(y,x) = part4.at<uchar>(y-edge, x-edge+1);
}
}
// extend the edges
extendTopRight(_part0, part1, edge);
extendTopRight(_part1, part2, edge);
extendTopRight(_part2, part3, edge);
extendTopRight(_part3, part4, edge);
extendTopRight(_part4, part0, edge);
extendBottomLeft(_part1, part0, edge);
extendBottomLeft(_part2, part1, edge);
extendBottomLeft(_part3, part2, edge);
extendBottomLeft(_part4, part3, edge);
extendBottomLeft(_part0, part4, edge);
// copy the extend image
part0 = _part0;
part1 = _part1;
part2 = _part2;
part3 = _part3;
part4 = _part4;
}
// the angle between the x-axis of local coordinate and the south pole
static float inherentAngle(const float* center, const float* axisx)
{
float t1 = -center[0]*axisx[0]-center[1]*axisx[1]-center[2]*axisx[2]+1.0f;
float x1 = axisx[0] + center[0] * t1;
float y1 = axisx[1] + center[1] * t1;
float z1 = axisx[2] + center[2] * t1;
float t2 = center[2]+1.0f;
float x2 = center[0] * t2;
float y2 = center[1] * t2;
float z2 = -1 + center[2] * t2;
x1 -= center[0];
y1 -= center[1];
z1 -= center[2];
x2 -= center[0];
y2 -= center[1];
z2 -= center[2];
float tmp = (x1*x2+y1*y2+z1*z2) / ( sqrt( (x1*x1+y1*y1+z1*z1) * (x2*x2+y2*y2+z2*z2) ) );
if (tmp>1.0f)
tmp = 1.0f;
if(tmp<-1.0f)
tmp = -1.0f;
float radian = acos( tmp );
if (center[0]*axisx[1]-axisx[0]*center[1]<0)
return (float)(-radian*(180.f/CV_PI));
else
return (float)(radian*(180.f/CV_PI));
}
static float IC_Angle(const Mat& img, const int half_k, Point2f pt, const float* geoinfo)
{
float m_01 = 0, m_10 = 0;
int step = (int)img.step1();
const uchar* center = &img.at<uchar> (cvRound(pt.y), cvRound(pt.x));
float tmp = sqrt(3.0f) * 0.5f;
for(int y=-half_k; y<=half_k; y++)
{
int xmax, xmin;
if(y<0)
{
xmin = -y-half_k;
xmax = half_k;
}
else
{
xmin = -half_k;
xmax = half_k-y;
}
for(int x=xmin; x<=xmax; x++)
{
float euclidX = x + y * 0.5f;
float euclidY = tmp * y;
m_10 += euclidX * center[x+y*step];
m_01 += euclidY * center[x+y*step];
}
}
return fastAtan2((float)m_01, (float)m_10);
//int x = pt.x - half_k - 2;
//int y = pt.y - half_k - 3;
//return fastAtan2((float)m_01, (float)m_10) - inherentAngle(geoinfo+(x+y*513)*3, geoinfo+(x+1+y*513)*3);
}
static void computeOrientation(const Mat& image, vector<KeyPoint>& kps, int halfPatchSize, const float* geoinfo)
{
for(size_t i=0;i<kps.size();i++)
{
kps[i].angle = IC_Angle(image, halfPatchSize, kps[i].pt, geoinfo);
}
}
static void computeOrbDescriptor(const KeyPoint& kpt, const Mat& img, const Point* pattern, byte* desc, int dsize)
{
float angle = kpt.angle;
angle *= (float)(CV_PI/180.f);
float a = (float)cos(angle), b = (float)sin(angle);
float c = sqrt(3.0f);
float d = b*c/3;
b = a - d;
a = a + d;
c = 2 * d;
int step = (int)img.step;
const uchar* center = &img.at<uchar>(cvRound(kpt.pt.y), cvRound(kpt.pt.x));
// Transform the sampling patterns from rectangle structure to the Euclidean space,
// after rotating the patterns, transform them to the original space.
#define GET_VALUE(idx) \
center[cvRound(pattern[idx].y*a + pattern[idx].x*c)*step + \
cvRound(pattern[idx].x*b - pattern[idx].y*c)]
for (int i = 0; i < dsize; ++i, pattern += 16)
{
int t0, t1, val;
t0 = GET_VALUE(0); t1 = GET_VALUE(1);
val = t0 < t1;
t0 = GET_VALUE(2); t1 = GET_VALUE(3);
val |= (t0 < t1) << 1;
t0 = GET_VALUE(4); t1 = GET_VALUE(5);
val |= (t0 < t1) << 2;
t0 = GET_VALUE(6); t1 = GET_VALUE(7);
val |= (t0 < t1) << 3;
t0 = GET_VALUE(8); t1 = GET_VALUE(9);
val |= (t0 < t1) << 4;
t0 = GET_VALUE(10); t1 = GET_VALUE(11);
val |= (t0 < t1) << 5;
t0 = GET_VALUE(12); t1 = GET_VALUE(13);
val |= (t0 < t1) << 6;
t0 = GET_VALUE(14); t1 = GET_VALUE(15);
val |= (t0 < t1) << 7;
desc[i] = (uchar)val;
}
#undef GET_VALUE
}
static void computeDescriptors(const Mat& image, vector<KeyPoint>& keypoints , Mat& descriptors,
const vector<Point>& pattern, int dsize, int WTA_K)
{
descriptors = Mat::zeros(keypoints.size(), dsize, CV_8UC1);
for (size_t i = 0; i < keypoints.size(); i++)
{
computeOrbDescriptor(keypoints[i], image, &pattern[0], descriptors.ptr((int)i), dsize);
}
}
// map the keypoint of each level of the five part of the storage grid to the original spherical image
static void mappingKeypoint(const Mat& img, vector<cv::KeyPoint>& kps, int edge, const float* geoinfo, int level)
{
float scale = float(cells[0])/float(cells[level]);
int pWidth = cells[level]*2+1;
float pcos[5] = {cos(0.0), cos(2*CV_PI/5), cos(4*CV_PI/5), cos(6*CV_PI/5), cos(8*CV_PI/5)};
float psin[5] = {sin(0.0), sin(2*CV_PI/5), sin(4*CV_PI/5), sin(6*CV_PI/5), sin(8*CV_PI/5)};
float c = CV_PI/img.rows;
for (size_t i=0;i<kps.size();i++)
{
int _x = static_cast<int>(kps[i].pt.x);
int _y = static_cast<int>(kps[i].pt.y);
int x = static_cast<int>(kps[i].pt.x - edge + 1);
int y = static_cast<int>(kps[i].pt.y - edge);
float sX3D = geoinfo[(x+y*pWidth)*3];
float sY3D = geoinfo[(x+y*pWidth)*3+1];
float sZ3D = geoinfo[(x+y*pWidth)*3+2];
float dX3D = pcos[kps[i].class_id]*sX3D - psin[kps[i].class_id]*sY3D;
float dY3D = pcos[kps[i].class_id]*sY3D + psin[kps[i].class_id]*sX3D;
float dZ3D = sZ3D;
float theta = acos(dZ3D);
float phi = atan2(dY3D,dX3D) + CV_PI;
float panoX = phi / c;
float panoY = theta / c;
kps[i].size = 31.0f*scale;
kps[i].pt.x = panoX*scale;
kps[i].pt.y = panoY*scale;
kps[i].class_id = -1;
kps[i].octave = level;
}
}
// the gaussian used to smooth the storage grid
static double kernel[] = { 0, 0, 0, 0.007615469730253, 0.012684563109382, 0.012684563109382, 0.007615469730253,
0, 0, 0.012684563109382, 0.027267400652990, 0.035191124791545, 0.027267400652990, 0.012684563109382,
0, 0.012684563109382, 0.035191124791545, 0.058615431367971, 0.058615431367971, 0.035191124791545, 0.012684563109382,
0.007615469730253, 0.027267400652990, 0.058615431367971, 0.075648683430860, 0.058615431367971, 0.027267400652990, 0.007615469730253,
0.012684563109382, 0.035191124791545, 0.058615431367971, 0.058615431367971, 0.035191124791545, 0.012684563109382, 0,
0.012684563109382, 0.027267400652990, 0.035191124791545, 0.027267400652990, 0.012684563109382, 0, 0,
0.007615469730253, 0.012684563109382, 0.012684563109382, 0.007615469730253, 0, 0, 0};
// the sampling pattern
static int bit_pattern[256*4] =
{
0, 13, -15, 14, /*mean (0.000196695), correlation (0)*/
-15, 1, -14, 15, /*mean (0.00235352), correlation (0.0867396)*/
15, -12, -4, -7, /*mean (0.00343412), correlation (0.0907921)*/
9, -15, 2, -1, /*mean (0.00463572), correlation (0.0883058)*/
15, -1, 5, 3, /*mean (0.0126926), correlation (0.0987857)*/
10, -8, 13, 2, /*mean (0.0138597), correlation (0.0987887)*/
-7, 4, -15, 6, /*mean (0.0160338), correlation (0.0988597)*/
4, 11, -5, 13, /*mean (0.0174904), correlation (0.0941022)*/
1, -14, 4, -10, /*mean (0.0179875), correlation (0.098813)*/
7, -4, -9, 11, /*mean (0.0201184), correlation (0.0996794)*/
-5, 2, -1, 4, /*mean (0.0202611), correlation (0.0999593)*/
10, -11, 15, -8, /*mean (0.021882), correlation (0.0984285)*/
9, 2, 9, 6, /*mean (0.0244927), correlation (0.0994798)*/
-2, 8, -4, 14, /*mean (0.027259), correlation (0.0940522)*/
-4, -10, -5, -5, /*mean (0.0273411), correlation (0.0986831)*/
-1, -9, -9, -6, /*mean (0.0275832), correlation (0.0981432)*/
-12, -1, -15, 4, /*mean (0.0298567), correlation (0.0972344)*/
15, -6, 12, -3, /*mean (0.0306563), correlation (0.0982352)*/
-5, -5, -8, 0, /*mean (0.0332757), correlation (0.0995229)*/
6, 1, 2, 2, /*mean (0.0345897), correlation (0.0925487)*/
2, -8, 4, -7, /*mean (0.0381859), correlation (0.0958004)*/
-3, 5, -3, 8, /*mean (0.0386657), correlation (0.0910819)*/
8, 6, 6, 9, /*mean (0.0458667), correlation (0.0944299)*/
-10, -3, -13, -2, /*mean (0.0459575), correlation (0.0948076)*/
15, -14, 13, -12, /*mean (0.0489183), correlation (0.0961879)*/
-13, 12, -15, 13, /*mean (0.0500119), correlation (0.0896462)*/
5, 10, 3, 12, /*mean (0.0518014), correlation (0.0956848)*/
-2, 14, -2, 15, /*mean (0.0703832), correlation (0.0863209)*/
-13, 6, -14, 7, /*mean (0.0727475), correlation (0.0964942)*/
-13, -2, -14, -1, /*mean (0.0860172), correlation (0.0972335)*/
-1, 2, -8, 4, /*mean (0.0284995), correlation (0.128915)*/
10, -7, 6, -5, /*mean (0.032502), correlation (0.123528)*/
1, -3, -1, 1, /*mean (0.0335177), correlation (0.128973)*/
2, 1, 2, 5, /*mean (0.0335869), correlation (0.128039)*/
8, -12, 11, -11, /*mean (0.0341488), correlation (0.129793)*/
6, -13, 3, -12, /*mean (0.0355104), correlation (0.129379)*/
-12, 13, -10, 15, /*mean (0.0367466), correlation (0.128868)*/
3, -14, 0, -13, /*mean (0.0413023), correlation (0.129571)*/
-5, 0, -6, 3, /*mean (0.0419853), correlation (0.125114)*/
-6, -2, -3, -2, /*mean (0.0509023), correlation (0.127468)*/
0, -15, 0, -14, /*mean (0.070206), correlation (0.10119)*/
5, 9, 5, 10, /*mean (0.0703054), correlation (0.115902)*/
1, -5, 0, -4, /*mean (0.0784703), correlation (0.124267)*/
-15, 3, -13, 3, /*mean (0.08163), correlation (0.11899)*/
3, 6, 4, 6, /*mean (0.10536), correlation (0.122715)*/
-9, -1, -8, -1, /*mean (0.11161), correlation (0.117768)*/
4, -3, 5, -3, /*mean (0.11652), correlation (0.128808)*/
-11, 9, -10, 9, /*mean (0.127084), correlation (0.128628)*/
15, -13, 11, -5, /*mean (0.0197813), correlation (0.166973)*/
13, -5, 4, 7, /*mean (0.020408), correlation (0.16229)*/
-1, -12, -2, 12, /*mean (0.0221456), correlation (0.165757)*/
-9, 7, -14, 12, /*mean (0.0226513), correlation (0.149167)*/
12, 3, 0, 10, /*mean (0.0229366), correlation (0.164526)*/
-8, 3, -11, 9, /*mean (0.0255689), correlation (0.168939)*/
-1, -13, -5, -8, /*mean (0.0271812), correlation (0.167755)*/
-11, 10, -10, 13, /*mean (0.0295369), correlation (0.156488)*/
-1, 8, -5, 9, /*mean (0.0315122), correlation (0.168131)*/
7, -3, 10, -2, /*mean (0.0327181), correlation (0.168398)*/
-11, -4, -10, -2, /*mean (0.0330985), correlation (0.158571)*/
4, 2, -2, 3, /*mean (0.0336431), correlation (0.163403)*/
7, -15, 10, -14, /*mean (0.0341056), correlation (0.165908)*/
14, -3, 11, -1, /*mean (0.0364397), correlation (0.159289)*/
10, -15, 7, -13, /*mean (0.0418945), correlation (0.168564)*/
0, -4, -3, -3, /*mean (0.0433079), correlation (0.156452)*/
-14, 5, -12, 6, /*mean (0.0465065), correlation (0.166389)*/
-7, -8, -11, -4, /*mean (0.0471116), correlation (0.161426)*/
3, -11, 2, -9, /*mean (0.049839), correlation (0.167447)*/
6, -2, 5, 0, /*mean (0.0509239), correlation (0.15398)*/
4, -8, 2, -6, /*mean (0.053902), correlation (0.164873)*/
-14, 9, -13, 10, /*mean (0.0549912), correlation (0.163488)*/
1, 4, -1, 6, /*mean (0.0588771), correlation (0.160916)*/
7, 0, 7, 1, /*mean (0.0700893), correlation (0.166851)*/
3, -9, 3, -8, /*mean (0.0721899), correlation (0.165257)*/
15, -7, 15, -6, /*mean (0.0724406), correlation (0.158128)*/
13, 0, 15, 0, /*mean (0.0758682), correlation (0.161292)*/
-1, 8, 0, 8, /*mean (0.113045), correlation (0.16224)*/
0, -2, 1, -2, /*mean (0.113477), correlation (0.167667)*/
14, -7, 15, -7, /*mean (0.118954), correlation (0.147736)*/
14, -15, 15, -15, /*mean (0.119381), correlation (0.168126)*/
-10, 15, -9, 15, /*mean (0.125251), correlation (0.162249)*/
-13, 3, 7, 6, /*mean (0.00479999), correlation (0.219219)*/
14, -4, 1, -2, /*mean (0.00824922), correlation (0.21777)*/
-10, -5, 4, 3, /*mean (0.00968426), correlation (0.209761)*/
15, -15, -13, 8, /*mean (0.010955), correlation (0.219427)*/
-2, 9, -10, 15, /*mean (0.0132329), correlation (0.209071)*/
15, -10, 4, 1, /*mean (0.0133064), correlation (0.217042)*/
-7, -7, -15, 10, /*mean (0.0166562), correlation (0.218543)*/
3, -9, 10, -3, /*mean (0.0195003), correlation (0.219571)*/
8, -11, -15, 0, /*mean (0.0202956), correlation (0.212531)*/
3, 7, 7, 8, /*mean (0.0210477), correlation (0.219609)*/
15, -2, 0, 15, /*mean (0.0218949), correlation (0.216145)*/
-9, 14, -15, 15, /*mean (0.0225303), correlation (0.198854)*/
-1, 4, 4, 9, /*mean (0.022673), correlation (0.216455)*/
-12, 7, -3, 10, /*mean (0.0232176), correlation (0.219485)*/
7, -6, 1, -5, /*mean (0.0241555), correlation (0.216268)*/
-9, -2, -8, 2, /*mean (0.0242852), correlation (0.218637)*/
15, -11, 10, -9, /*mean (0.0246223), correlation (0.214)*/
4, -12, -6, -2, /*mean (0.0260055), correlation (0.212964)*/
-3, 11, 1, 14, /*mean (0.0261957), correlation (0.209467)*/
1, -6, -9, 5, /*mean (0.0271509), correlation (0.216454)*/
-1, -7, -1, -3, /*mean (0.0273022), correlation (0.219368)*/
0, -1, -5, 7, /*mean (0.0289015), correlation (0.218391)*/
8, -10, 8, -7, /*mean (0.0296319), correlation (0.214665)*/
7, -7, 6, -2, /*mean (0.0300728), correlation (0.213401)*/
4, 5, 2, 11, /*mean (0.0308984), correlation (0.208114)*/
-4, -8, -1, -7, /*mean (0.0317975), correlation (0.213124)*/
-3, 7, -7, 8, /*mean (0.0326101), correlation (0.202289)*/
-7, 8, -10, 10, /*mean (0.0341272), correlation (0.211545)*/
1, -13, -3, -12, /*mean (0.0359383), correlation (0.200318)*/
-4, -3, -11, 2, /*mean (0.0367855), correlation (0.219147)*/
-11, 4, -9, 5, /*mean (0.0373517), correlation (0.212568)*/
7, 1, 8, 3, /*mean (0.0381038), correlation (0.211246)*/
-4, -2, -3, 0, /*mean (0.0403428), correlation (0.219019)*/
14, -1, 14, 1, /*mean (0.0415919), correlation (0.217099)*/
-6, -9, -4, -8, /*mean (0.0417778), correlation (0.205248)*/
-14, 3, -13, 5, /*mean (0.0421149), correlation (0.214165)*/
-15, 12, -15, 14, /*mean (0.0423613), correlation (0.21214)*/
-7, -4, -11, -3, /*mean (0.0431004), correlation (0.214436)*/
8, -12, 6, -10, /*mean (0.0434246), correlation (0.200937)*/
-6, 9, -6, 11, /*mean (0.0478334), correlation (0.206306)*/
14, -4, 15, -3, /*mean (0.053647), correlation (0.188974)*/
3, 6, 1, 7, /*mean (0.0573556), correlation (0.212569)*/
9, -14, 9, -13, /*mean (0.0688487), correlation (0.199587)*/
-14, 7, -14, 8, /*mean (0.0689525), correlation (0.214022)*/
-6, 15, -3, 15, /*mean (0.0692032), correlation (0.217487)*/
15, -15, 15, -14, /*mean (0.071628), correlation (0.181987)*/
11, 4, 10, 5, /*mean (0.0722159), correlation (0.207965)*/
2, 13, 1, 14, /*mean (0.0743209), correlation (0.216403)*/
14, 1, 13, 2, /*mean (0.0767025), correlation (0.211112)*/
8, 5, 10, 5, /*mean (0.0767759), correlation (0.187129)*/
7, 5, 6, 6, /*mean (0.077005), correlation (0.218884)*/
4, 3, 3, 4, /*mean (0.0780165), correlation (0.219462)*/
2, 12, 3, 12, /*mean (0.113101), correlation (0.204923)*/
10, -2, 11, -2, /*mean (0.116071), correlation (0.206195)*/
-15, 0, -14, 0, /*mean (0.117125), correlation (0.194557)*/
-15, 15, -14, 15, /*mean (0.118236), correlation (0.213365)*/
-1, -7, 0, -7, /*mean (0.118854), correlation (0.203522)*/
6, -10, 7, -10, /*mean (0.120851), correlation (0.218447)*/
-5, 12, -4, 12, /*mean (0.121279), correlation (0.20892)*/
4, -15, -15, 14, /*mean (0.00336927), correlation (0.273755)*/
6, -14, 8, 5, /*mean (0.00488642), correlation (0.279447)*/
15, -6, -15, 13, /*mean (0.00646842), correlation (0.255713)*/
-14, -1, -1, 1, /*mean (0.00707355), correlation (0.283177)*/
-2, 5, -15, 11, /*mean (0.00939897), correlation (0.275681)*/
12, -9, -2, -1, /*mean (0.00999546), correlation (0.281584)*/
14, 1, -15, 9, /*mean (0.0104018), correlation (0.281006)*/
12, -14, -9, 15, /*mean (0.0105098), correlation (0.278655)*/
-7, 6, 8, 7, /*mean (0.0107605), correlation (0.280916)*/
15, -12, 7, 8, /*mean (0.0115775), correlation (0.281633)*/
-2, -13, 13, -1, /*mean (0.0119449), correlation (0.283968)*/
-10, -3, -7, 14, /*mean (0.0126407), correlation (0.285558)*/
14, -14, 3, -4, /*mean (0.0138424), correlation (0.283279)*/
10, -11, 0, 3, /*mean (0.0141881), correlation (0.283786)*/
13, -7, -10, -2, /*mean (0.0142357), correlation (0.284256)*/
3, -13, 6, -6, /*mean (0.0145685), correlation (0.284786)*/
2, -15, -2, -6, /*mean (0.015031), correlation (0.283388)*/
-3, -11, 6, -8, /*mean (0.0151909), correlation (0.285178)*/
12, 0, -9, 14, /*mean (0.0154589), correlation (0.28538)*/
14, -2, -6, 0, /*mean (0.0154589), correlation (0.284792)*/
-10, 1, -4, 3, /*mean (0.015688), correlation (0.27994)*/
-4, 2, -12, 13, /*mean (0.0157788), correlation (0.284405)*/
-4, -4, 4, -1, /*mean (0.0162499), correlation (0.283384)*/
1, -10, 2, 2, /*mean (0.0162715), correlation (0.282837)*/
-9, 2, -2, 15, /*mean (0.0165741), correlation (0.284352)*/
3, -4, 14, 0, /*mean (0.0168853), correlation (0.285193)*/
-7, 10, -12, 14, /*mean (0.0170582), correlation (0.280953)*/
-13, 6, -10, 12, /*mean (0.0173046), correlation (0.282108)*/
7, -2, -15, 5, /*mean (0.0177498), correlation (0.277614)*/
1, 0, 7, 4, /*mean (0.0181431), correlation (0.282959)*/
-1, -14, -15, 6, /*mean (0.0181604), correlation (0.281862)*/
-5, 11, -11, 12, /*mean (0.0186315), correlation (0.282597)*/
15, -9, -3, 13, /*mean (0.0188174), correlation (0.285063)*/
15, -7, 8, -4, /*mean (0.019764), correlation (0.283551)*/
-14, 2, -4, 8, /*mean (0.0204902), correlation (0.284785)*/
11, -14, 13, -10, /*mean (0.0206371), correlation (0.26634)*/
-7, -8, -3, 5, /*mean (0.0209526), correlation (0.279196)*/
-6, 8, 0, 12, /*mean (0.0210564), correlation (0.279815)*/
-6, 1, -5, 6, /*mean (0.0210996), correlation (0.274191)*/
15, -13, 7, -11, /*mean (0.0212898), correlation (0.284267)*/
-10, 9, -15, 10, /*mean (0.0213935), correlation (0.264998)*/
12, -7, 9, 0, /*mean (0.0215102), correlation (0.281889)*/
14, -15, 9, -8, /*mean (0.0222234), correlation (0.285447)*/
-6, -6, 5, 10, /*mean (0.0222407), correlation (0.282781)*/
11, -3, -3, 5, /*mean (0.0225779), correlation (0.277698)*/
6, -15, 3, -11, /*mean (0.0226427), correlation (0.276495)*/
-4, -1, 0, 9, /*mean (0.0228415), correlation (0.28444)*/
4, -3, -7, -1, /*mean (0.0232348), correlation (0.283978)*/
5, -8, 1, 6, /*mean (0.0232392), correlation (0.279056)*/
11, -2, 10, 4, /*mean (0.0233127), correlation (0.282934)*/
-9, 0, -15, 8, /*mean (0.0241555), correlation (0.284957)*/
4, 7, -5, 15, /*mean (0.0241555), correlation (0.268863)*/
8, -8, -9, 3, /*mean (0.0241771), correlation (0.285399)*/
2, -6, -10, -4, /*mean (0.0243068), correlation (0.283939)*/
5, -9, -4, -5, /*mean (0.0244019), correlation (0.2797)*/
6, 1, -5, 12, /*mean (0.0248644), correlation (0.285081)*/
7, -3, 0, 8, /*mean (0.0255387), correlation (0.28087)*/
-4, 4, 0, 5, /*mean (0.0260314), correlation (0.278163)*/
-7, -6, -5, -2, /*mean (0.0262519), correlation (0.283694)*/
0, -10, -15, 3, /*mean (0.0263253), correlation (0.278577)*/
15, -9, 11, -7, /*mean (0.0264377), correlation (0.270823)*/
10, -10, 6, -8, /*mean (0.026844), correlation (0.273929)*/
4, -2, 2, 13, /*mean (0.0271077), correlation (0.285601)*/
1, -6, 6, -5, /*mean (0.0272374), correlation (0.278473)*/
2, -15, 15, -15, /*mean (0.027756), correlation (0.285406)*/
6, -5, -2, 2, /*mean (0.0279592), correlation (0.28443)*/
-4, 1, -11, 7, /*mean (0.0286681), correlation (0.282063)*/
0, -5, 1, -2, /*mean (0.0287199), correlation (0.274318)*/
9, 2, 4, 4, /*mean (0.0289058), correlation (0.277918)*/
9, 0, 13, 1, /*mean (0.0291219), correlation (0.281146)*/
-6, 11, -7, 15, /*mean (0.0297443), correlation (0.284571)*/
-1, 0, 2, 1, /*mean (0.0298049), correlation (0.271109)*/
-9, -1, -15, 2, /*mean (0.0313393), correlation (0.285131)*/
-12, -2, -10, 0, /*mean (0.0316073), correlation (0.283623)*/
-1, 6, -1, 10, /*mean (0.0316678), correlation (0.283354)*/
15, -10, 15, -7, /*mean (0.0320006), correlation (0.273356)*/
-2, 4, -7, 10, /*mean (0.0322297), correlation (0.270098)*/
1, 3, -5, 5, /*mean (0.0327268), correlation (0.28388)*/
9, -8, 11, -6, /*mean (0.0328175), correlation (0.273843)*/
-7, 6, -6, 9, /*mean (0.0330553), correlation (0.284424)*/
4, -11, -1, -10, /*mean (0.0330639), correlation (0.276539)*/
-12, 7, -15, 8, /*mean (0.0338376), correlation (0.282607)*/
5, 9, 0, 11, /*mean (0.0339197), correlation (0.275682)*/
-9, -6, -14, 1, /*mean (0.0345421), correlation (0.271055)*/
-2, 12, -5, 14, /*mean (0.0347194), correlation (0.280668)*/
-9, 11, -6, 13, /*mean (0.0353677), correlation (0.262672)*/
10, -5, 12, -3, /*mean (0.035506), correlation (0.281089)*/
-8, 3, -6, 4, /*mean (0.0360377), correlation (0.284495)*/
2, 0, -3, 1, /*mean (0.0364915), correlation (0.285368)*/
-1, 9, 1, 10, /*mean (0.036552), correlation (0.278575)*/
6, -1, 3, 1, /*mean (0.0367898), correlation (0.285137)*/
-2, -13, 0, -11, /*mean (0.0371658), correlation (0.279776)*/
14, -6, 15, -4, /*mean (0.0376197), correlation (0.24281)*/
8, -4, 5, -1, /*mean (0.0376413), correlation (0.279717)*/
-7, 6, -10, 8, /*mean (0.0380217), correlation (0.276929)*/
11, -3, 12, -1, /*mean (0.03867), correlation (0.283306)*/
4, 3, 5, 5, /*mean (0.0387435), correlation (0.284163)*/
8, 7, 4, 8, /*mean (0.0387478), correlation (0.283709)*/
-9, 14, -5, 15, /*mean (0.0388429), correlation (0.279198)*/
13, 2, 10, 4, /*mean (0.0392492), correlation (0.281706)*/
-10, 3, -13, 4, /*mean (0.0394307), correlation (0.280171)*/
-14, 0, -13, 2, /*mean (0.0394567), correlation (0.270968)*/
-1, -2, -6, 1, /*mean (0.0413758), correlation (0.278449)*/
1, 10, -1, 13, /*mean (0.0416568), correlation (0.281767)*/
-11, 5, -10, 7, /*mean (0.0421668), correlation (0.277155)*/
-1, -4, -3, -1, /*mean (0.0424434), correlation (0.281096)*/
1, -10, -2, -9, /*mean (0.0427071), correlation (0.273452)*/
0, 6, -3, 8, /*mean (0.0438655), correlation (0.273137)*/
-7, 2, -10, 3, /*mean (0.0441292), correlation (0.28543)*/
-3, -6, -6, -3, /*mean (0.0472931), correlation (0.282788)*/
15, -12, 13, -10, /*mean (0.0473407), correlation (0.27601)*/
6, -10, 4, -9, /*mean (0.051395), correlation (0.27438)*/
1, 0, 0, 2, /*mean (0.052735), correlation (0.276666)*/
0, -14, -1, -12, /*mean (0.0538113), correlation (0.273652)*/
4, -12, 2, -11, /*mean (0.053889), correlation (0.28349)*/
6, 4, 4, 5, /*mean (0.0542867), correlation (0.27425)*/
-3, -11, -5, -10, /*mean (0.0548529), correlation (0.272518)*/
};
SPHORB::SPHORB(int _nfeatures, int _nlevels, int b): nfeatures(_nfeatures), barrier(b)
{
initSORB();
nlevels = min(_nlevels, levels);
}
SPHORB::~SPHORB()
{
uninitSORB();
}
int SPHORB::descriptorSize() const
{
return kBytes;
}
int SPHORB::descriptorType() const
{
return CV_8U;
}
void SPHORB::operator()(InputArray _image, InputArray _mask, vector<KeyPoint>& _keypoints,
OutputArray _descriptors, bool useProvidedKeypoints) const
{
bool do_keypoints = !useProvidedKeypoints;
bool do_descriptors = _descriptors.needed();
if( (!do_keypoints && !do_descriptors) || _image.empty() )
return;
_keypoints.clear();
Mat temp = _image.getMat();
Mat descriptors;
if( temp.type() != CV_8UC1 )
cvtColor(_image, temp, CV_BGR2GRAY);
// compute how many features should be detected on every scale space level
vector<int> nfeaturesPerLevel(nlevels);
float factor = (float)(1.0 / pow(2.0, 1/3.0));
float ndesiredFeaturesPerScale = nfeatures*(1 - factor)/(1 - (float)pow((double)factor, (double)nlevels));
int sumFeatures = 0;
for( int level = 0; level < nlevels-1; level++ )
{
nfeaturesPerLevel[level] = cvRound(ndesiredFeaturesPerScale);
sumFeatures += nfeaturesPerLevel[level];
ndesiredFeaturesPerScale *= factor;
}
nfeaturesPerLevel[nlevels-1] = std::max(nfeatures - sumFeatures, 0);
// Gaussian kernel for hexagonal grid
Mat matKernel(7, 7, CV_64F, kernel);
// sampling pattern
const int npoints = 512;
vector<Point> pattern;
const Point* pattern0 = (const Point*)bit_pattern;
std::copy(pattern0, pattern0 + 512, std::back_inserter(pattern));
// detect and describe the features on every level
for (int l=0;l<nlevels;l++)
{
// resize the spherical image
Size sz(cells[l]*5, cells[l]*5/2);
Mat image(sz, temp.type());
resize(temp, image, sz, 0, 0, CV_INTER_AREA);
// split the spherical image to five parts
Mat subImg[5];
for(int i=0;i<5;i++)
{
subImg[i].create(Size(2*cells[l]+1, cells[l]+1), image.type());
splitSphere2(image, subImg[i], i, imgInfos[l][i]);
}
// extend each part for boundary pixels
extendEdge(subImg[0], subImg[1], subImg[2], subImg[3], subImg[4], SFAST_EDGE + SPHORB_EDGE);
// the key points on each level
vector<KeyPoint> levelKeyPoints;
for (int i=0;i<5;i++)
{
xy* corners;
int* score;
int cor_num;
vector<KeyPoint> partKeyPoints;
// detect the key points and do the non-max suppression
corners = sfast_corner_detect(&subImg[i].at<uchar>(0,0), &maskes[l].at<uchar>(0,0),
maskes[l].cols, (int)maskes[l].step, maskes[l].rows, barrier, &cor_num);
score = sfastScore(&subImg[i].at<uchar>(0,0), (int)subImg[i].step, corners, cor_num, barrier);
sfastNonmaxSuppression(corners, score, cor_num, partKeyPoints, i);
levelKeyPoints.insert(levelKeyPoints.end(), partKeyPoints.begin(), partKeyPoints.end());
delete[] corners;
delete[] score;
}
if (levelKeyPoints.size()>nfeaturesPerLevel[l])
KeyPointsFilter::retainBest(levelKeyPoints, nfeaturesPerLevel[l]);
// compute the orientation
for(size_t i=0;i<levelKeyPoints.size();i++)
levelKeyPoints[i].angle = IC_Angle(subImg[levelKeyPoints[i].class_id], SPHORB_EDGE, levelKeyPoints[i].pt, geoinfos[l]);
// filter the image
for (int i=0;i<5;i++)
filter2D(subImg[i], subImg[i], -1, matKernel);
Mat tDesc = Mat::zeros(levelKeyPoints.size(), kBytes, CV_8UC1);
for(size_t i=0;i<levelKeyPoints.size();i++)
{
computeOrbDescriptor(levelKeyPoints[i], subImg[levelKeyPoints[i].class_id], &pattern[0], tDesc.ptr((int)i), kBytes);
}
descriptors.push_back(tDesc);
mappingKeypoint(image, levelKeyPoints, SFAST_EDGE + SPHORB_EDGE, geoinfos[l], l);
_keypoints.insert(_keypoints.end(), levelKeyPoints.begin(), levelKeyPoints.end());
}
descriptors.copyTo(_descriptors);
}
void SPHORB::operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const
{
(*this)(image, mask, keypoints, noArray(), false);
}
void SPHORB::detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask) const
{
(*this)(image, mask, keypoints, noArray(), false);
}
void SPHORB::computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors) const
{
(*this)(image, Mat(), keypoints, descriptors, true);
}
}