-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy patheda.py
206 lines (162 loc) · 6.31 KB
/
eda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Easy data augmentation techniques for text classification
# Jason Wei and Kai Zou
import random
from random import shuffle
from pyhanlp import *
from ciLin import CilinSimilarity
random.seed(1)
#stop words list
stop_words = set()
def stopword_init():
stopwords_file = '哈工大停用词表.txt'
with open(stopwords_file, 'r') as f:
for line in f.readlines():
stop_words.add(line.strip())
stopwords_file = '百度停用词表.txt'
with open(stopwords_file, 'r') as f:
for line in f.readlines():
stop_words.add(line.strip())
print("已经初始化停用词表词个数: ", len(stop_words))
stopword_init()
synonym_handler = CilinSimilarity()
def get_segment(line):
HanLP.Config.ShowTermNature = False
StandardTokenizer = JClass("com.hankcs.hanlp.tokenizer.StandardTokenizer")
segment_list = StandardTokenizer.segment(line)
terms_list = []
for terms in segment_list :
terms_list.append(str(terms))
return terms_list
########################################################################
# Synonym replacement
# Replace n words in the sentence with synonyms from wordnet
########################################################################
def synonym_replacement(words, n):
new_words = words.copy()
random_word_list = list(set([word for word in words if word not in stop_words]))
random.shuffle(random_word_list)
num_replaced = 0
for random_word in random_word_list:
synonyms = get_synonyms(random_word)
if len(synonyms) >= 1:
synonym = random.choice(list(synonyms))
new_words = [synonym if word == random_word else word for word in new_words]
#print("replaced", random_word, "with", synonym)
num_replaced += 1
if num_replaced >= n: #only replace up to n words
break
#this is stupid but we need it, trust me
sentence = ' '.join(new_words)
new_words = sentence.split(' ')
return new_words
def get_synonyms(word):
synonyms = set()
if word not in synonym_handler.vocab:
print(word, '未被词林词林收录!')
else:
codes = synonym_handler.word_code[word]
for code in codes:
key = synonym_handler.code_word[code]
synonyms.update(key)
if word in synonyms:
synonyms.remove(word)
return list(synonyms)
########################################################################
# Random deletion
# Randomly delete words from the sentence with probability p
########################################################################
def random_deletion(words, p):
#obviously, if there's only one word, don't delete it
if len(words) == 1:
return words
#randomly delete words with probability p
new_words = []
for word in words:
r = random.uniform(0, 1)
if r > p:
new_words.append(word)
#if you end up deleting all words, just return a random word
if len(new_words) == 0:
rand_int = random.randint(0, len(words)-1)
return [words[rand_int]]
return new_words
########################################################################
# Random swap
# Randomly swap two words in the sentence n times
########################################################################
def random_swap(words, n):
new_words = words.copy()
for _ in range(n):
new_words = swap_word(new_words)
return new_words
def swap_word(new_words):
random_idx_1 = random.randint(0, len(new_words)-1)
random_idx_2 = random_idx_1
counter = 0
while random_idx_2 == random_idx_1:
random_idx_2 = random.randint(0, len(new_words)-1)
counter += 1
if counter > 3:
return new_words
new_words[random_idx_1], new_words[random_idx_2] = new_words[random_idx_2], new_words[random_idx_1]
return new_words
########################################################################
# Random insertion
# Randomly insert n words into the sentence
########################################################################
def random_insertion(words, n):
new_words = words.copy()
for _ in range(n):
add_word(new_words)
return new_words
def add_word(new_words):
synonyms = []
counter = 0
while len(synonyms) < 1:
random_word = new_words[random.randint(0, len(new_words)-1)]
synonyms = get_synonyms(random_word)
counter += 1
if counter >= 10:
return
random_synonym = synonyms[0]
random_idx = random.randint(0, len(new_words)-1)
new_words.insert(random_idx, random_synonym)
########################################################################
# main data augmentation function
########################################################################
def eda(sentence, alpha_sr=0.1, alpha_ri=0.1, alpha_rs=0.1, p_rd=0.1, num_aug=9):
words = get_segment(sentence)
num_words = len(words)
augmented_sentences = []
num_new_per_technique = int(num_aug/4)+1
n_sr = max(1, int(alpha_sr*num_words))
n_ri = max(1, int(alpha_ri*num_words))
n_rs = max(1, int(alpha_rs*num_words))
#sr
for _ in range(num_new_per_technique):
a_words = synonym_replacement(words, n_sr)
augmented_sentences.append(''.join(a_words))
#ri
for _ in range(num_new_per_technique):
a_words = random_insertion(words, n_ri)
augmented_sentences.append(''.join(a_words))
#rs
for _ in range(num_new_per_technique):
a_words = random_swap(words, n_rs)
augmented_sentences.append(''.join(a_words))
#rd
for _ in range(num_new_per_technique):
a_words = random_deletion(words, p_rd)
augmented_sentences.append(''.join(a_words))
augmented_sentences = [get_segment(sentence) for sentence in augmented_sentences]
shuffle(augmented_sentences)
#trim so that we have the desired number of augmented sentences
if num_aug >= 1:
augmented_sentences = augmented_sentences[:num_aug]
else:
keep_prob = num_aug / len(augmented_sentences)
augmented_sentences = [s for s in augmented_sentences if random.uniform(0, 1) < keep_prob]
augmented_sentences = [''.join(sentence) for sentence in augmented_sentences]
#append the original sentence
augmented_sentences.append(sentence)
return list(set(augmented_sentences))