forked from udacity/CarND-Behavioral-Cloning-P3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdrive.3small.py
252 lines (208 loc) · 8.23 KB
/
drive.3small.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import argparse
import base64
from datetime import datetime
import os
import sys
import shutil
import cv2
import math
import numpy as np
import socketio
import eventlet
import eventlet.wsgi
from PIL import Image
from flask import Flask
from io import BytesIO
from keras.models import load_model
import h5py
from keras import __version__ as keras_version
sio = socketio.Server()
app = Flask(__name__)
model = None
# prev_image_array = None
#use_S_only = True
use_RGB = False # use RGB images
use_Y_only = False # use only Y channel of YUV
reverse_throttle = False # Try braking to prevent oversteer
moderate_steer = False # try moderating steering to prevent oversteer
average_steer = True # try to smooth steering
'''
set up global clahe so that it doesn't get repeated, and variables remain constant
'''
clahe = cv2.createCLAHE(clipLimit=4.0, tileGridSize=(32,32))
'''
initialize lists to store recorded data in - this prevents recording from affecting
performance during autonomous driving, these can be saved when drive is complete.
'''
filenames = []
rec_images = []
# gloabal params for moderating steering
steer_history = [0.0,0.0,0.0,0.0,0.0,0.0]
steer_mod_weights = [1.4,2.0,0.6,0.3,0.15,0.08]
# increasing this should reduce steering angles - this could result in leaving the track on corners
straightening_factor = 1.0
'''
steer_mod
subroutine to try to moderate steering variability
'''
def steer_mod(new_steering_angle):
steer_history[0] = new_steering_angle
projected_next_steer = (steer_history[0] - steer_history[1]) + steer_history[0]
steer_history.insert(0,projected_next_steer)
steer_history.pop()
adjusted_steering_angle = (sum(np.asarray(steer_history)*np.asarray(steer_mod_weights))/
sum(np.asarray(steer_mod_weights)*straightening_factor))
steer_history[0] = adjusted_steering_angle
sys.stdout.write("Adjusting steer to {0:04.3f}\t".format(adjusted_steering_angle*90/3.14*0.872))
return adjusted_steering_angle
'''
PI controller used for speed control
'''
class SimplePIController:
def __init__(self, Kp, Ki):
self.Kp = Kp
self.Ki = Ki
self.set_point = 0.
self.error = 0.
self.integral = 0.
def set_desired(self, desired):
self.set_point = desired
def update(self, measurement):
# proportional error
self.error = self.set_point - measurement
# integral error
self.integral += self.error
return self.Kp * self.error + self.Ki * self.integral
controller = SimplePIController(0.1, 0.002)
# 30.3 is maximum speed at which car will go
set_speed = 30.3 #25#30.3 #10
controller.set_desired(set_speed)
@sio.on('telemetry')
def telemetry(sid, data):
if data:
# The current steering angle of the car
steering_angle = data["steering_angle"]
# The current throttle of the car
throttle = data["throttle"]
# The current speed of the car
speed = data["speed"]
# The current image from the center camera of the car
imgString = data["image"]
pil_image = Image.open(BytesIO(base64.b64decode(imgString)))
image2 = np.asarray(pil_image)
## Added code to modify image sent to prediction
if use_RGB == False:
#this is a bug which I just discovered I had put in - should be RGB2HSV
image_array = cv2.cvtColor(image2, cv2.COLOR_BGR2HSV_FULL)
h,s,v = cv2.split(image_array)
cl_v = clahe.apply(v)
#image_array = cv2.cvtColor(image2, cv2.COLOR_RGB2YUV)
#y,u,v = cv2.split(image_array)
#cl_y = clahe.apply(y)
if use_Y_only == True:
#image_array = np.reshape(cl_y,(160,320,1))
image_array = np.reshape(cl_v,(160,320,1))
#print(image_array.shape)
else:
image_array = cv2.merge((h,s,cl_v))
image_array = cv2.resize(image_array, (80,40), interpolation = cv2.INTER_AREA)
# to write whats going to model to video
#cv_image = image_array[70:140,10:310,:]
else:
#image_array = cv2.cvtColor(image2, cv2.COLOR_RGB2BGR)
image_array = cv2.resize(image2, (80,40), interpolation = cv2.INTER_AREA)
#if use_Y_only == True:
# cv_image2 = np.reshape(cv_image,(70,310))
# cv_image = cv2.cvtColor(cv_image2, cv2.COLOR_GRAY2BGR)
#pil_image = Image.fromarray(cv_image)
#print("About to predict")
steering_angle = float(model.predict(image_array[None, :, :, :], batch_size=1))
#steering_angle = steer_smoother(steering_angle)
throttle = controller.update(float(speed))
if abs(steering_angle) > 0.1 and moderate_steer == True:
adjusted_angle = steering_angle/(abs(steering_angle)) * (0.1 + ((abs(steering_angle) -.1) * .75 * math.cos(steering_angle*math.pi/4.0)))
#adjusted_angle = steering_angle/(abs(steering_angle)) * (0.1 + ((steering_angle -.1) * .6 * math.cos(steering_angle*math.pi/2.0)))
sys.stdout.write("Adjusting steering to {0:02.3f} ".format(adjusted_angle))
steering_angle = adjusted_angle
if abs(steering_angle)>0.25 and float(speed)>24.0 and reverse_throttle== True:
throttle = -15
print("slowing down!")
if float(speed)>(set_speed+0.5):
throttle = 0.0
sys.stdout.write("Calculated steering angle:{0:04.3f} \tthrottle: {1:04.2f} \t".format(steering_angle*90/3.14*0.872, throttle))
if average_steer == True:
steering_angle = steer_mod(steering_angle)
sys.stdout.write("\r")
sys.stdout.flush()
send_control(steering_angle, throttle)
# save frame
if args.image_folder != '':
timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3]
image_filename = os.path.join(args.image_folder, timestamp)
filenames.append(image_filename)
#pil_image.save('{}.jpg'.format(image_filename))
rec_images.append(pil_image)
else:
# NOTE: DON'T EDIT THIS.
sio.emit('manual', data={}, skip_sid=True)
@sio.on('connect')
def connect(sid, environ):
print("connect ", sid)
send_control(0, 0)
@sio.on('disconnect')
def disconnect(sid):
print("In Disconnect")
if args.image_folder != '':
print("\n*******")
if len(filenames) > 0:
for i in range(len(filenames)):
sys.stdout.write("Writing:{}\r".format(filenames[i]))
sys.stdout.flush()
rec_images[i].save('{}.jpg'.format(filenames[i]))
print("\n*******")
print("\nGoodbye")
def send_control(steering_angle, throttle):
sio.emit(
"steer",
data={
'steering_angle': steering_angle.__str__(),
'throttle': throttle.__str__()
},
skip_sid=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Remote Driving')
parser.add_argument(
'model',
type=str,
help='Path to model h5 file. Model should be on the same path.'
)
parser.add_argument(
'image_folder',
type=str,
nargs='?',
default='',
help='Path to image folder. This is where the images from the run will be saved.'
)
args = parser.parse_args()
# check that model Keras version is same as local Keras version
f = h5py.File(args.model, mode='r')
model_version = f.attrs.get('keras_version')
keras_version = str(keras_version).encode('utf8')
if model_version != keras_version:
print('You are using Keras version ', keras_version,
', but the model was built using ', model_version)
model = load_model(args.model)
if args.image_folder != '':
print("Creating image folder at {}".format(args.image_folder))
if not os.path.exists(args.image_folder):
os.makedirs(args.image_folder)
else:
shutil.rmtree(args.image_folder)
os.makedirs(args.image_folder)
print("RECORDING THIS RUN ...")
else:
print("NOT RECORDING THIS RUN ...")
# wrap Flask application with engineio's middleware
app = socketio.Middleware(sio, app)
# deploy as an eventlet WSGI server
eventlet.wsgi.server(eventlet.listen(('', 4567)), app)