forked from Sunbird-AIAssistant/sakhi-api-service
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathindex_documents.py
104 lines (86 loc) · 3.49 KB
/
index_documents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import argparse
from typing import (
List
)
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from llama_index import SimpleDirectoryReader
from env_manager import vectorstore_class
def document_loader(input_dir: str) -> List[Document]:
"""Load data from the input directory.
Args:
input_dir (str): Path to the directory.
Returns:
List[Document]: A list of documents.
"""
return SimpleDirectoryReader(
input_dir=input_dir, recursive=True).load_data() # show_progress=True
def split_documents(documents: List[Document], chunk_size: int = 4000, chunk_overlap = 200) -> List[Document]:
"""Split documents.
Args:
documents: List of documents
chunk_size: Maximum size of chunks to return
chunk_overlap: Overlap in characters between chunks
Returns:
List[Document]: A list of documents.
"""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap)
# splited_docs = text_splitter.split_documents(documents)
splited_docs = []
for document in documents:
for chunk in text_splitter.split_text(document.text):
splited_docs.append(Document(page_content=chunk, metadata={
"page_label": document.metadata.get("page_label"),
"file_name": document.metadata.get("file_name"),
"file_path": document.metadata.get("file_path"),
"file_type": document.metadata.get("file_type")
}))
return splited_docs
def transform_documents():
pass
def load_documents(folder_path: str, chunk_size: int, chunk_overlap: int) -> List[Document]:
documents = document_loader(folder_path)
splitted_documents = split_documents(documents, chunk_size, chunk_overlap)
return splitted_documents
def indexer_main():
parser = argparse.ArgumentParser()
parser.add_argument('--folder_path',
type=str,
required=True,
help='Path to the folder',
default="input_data"
)
parser.add_argument('--chunk_size',
type=int,
required=False,
help='documents chunk size',
default=1024
)
parser.add_argument('--chunk_overlap',
type=int,
required=False,
help='documents chunk size',
default=200
)
parser.add_argument('--fresh_index',
action='store_true',
help='Is the indexing fresh'
)
args = parser.parse_args()
FOLDER_PATH = args.folder_path
FRESH_INDEX = args.fresh_index
CHUNK_SIZE = args.chunk_size
CHUNK_OVERLAP = args.chunk_overlap
documents = load_documents(FOLDER_PATH, CHUNK_SIZE, CHUNK_OVERLAP)
print("Total documents :: =>", len(documents))
print("Adding documents...")
results = vectorstore_class.add_documents(documents, FRESH_INDEX)
print("results =======>", results)
print("============ INDEX DONE =============")
if __name__ == "__main__":
indexer_main()
# For Fresh collection
# python3 index_documents.py --folder_path=Documents --fresh_index
# For appending documents to existing collection
# python3 index_documents.py --folder_path=Documents