forked from Sunbird-AIAssistant/sakhi-api-service
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
231 lines (198 loc) · 10 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import json
from enum import Enum
from dotenv import load_dotenv
from pydantic import BaseModel
from fastapi import FastAPI, HTTPException, status, Header
from fastapi.middleware.cors import CORSMiddleware
from utils import is_url, is_base64, prepare_redis_key, get_from_env_or_config
from env_manager import storage_class as storage
from io_processing import *
from query_with_langchain import *
from telemetry_middleware import TelemetryMiddleware
app = FastAPI(
title="Sakhi API Service",
# docs_url=None, # Swagger UI: disable it by setting docs_url=None
redoc_url=None, # ReDoc : disable it by setting docs_url=None
swagger_ui_parameters={"defaultModelsExpandDepth": -1},
description='',
version="1.0.0"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.on_event("startup")
async def startup_event():
logger.info('Invoking startup_event')
load_dotenv()
logger.info('startup_event : Engine created')
@app.on_event("shutdown")
async def shutdown_event():
logger.info('Invoking shutdown_event')
logger.info('shutdown_event : Engine closed')
Context = Enum("Context", {type: type for type in get_from_env_or_config('request', 'supported_context', None).split(',')})
DropdownOutputFormat = Enum("DropdownOutputFormat", {type: type for type in get_from_env_or_config('request', 'supported_response_format', None).split(',')})
DropDownInputLanguage = Enum("DropDownInputLanguage", {type: type for type in get_from_env_or_config('request', 'supported_lang_codes', None).split(',')})
class OutputResponse(BaseModel):
text: str
audio: str = None
language: DropDownInputLanguage # type: ignore
format: DropdownOutputFormat # type: ignore
class ResponseForQuery(BaseModel):
output: OutputResponse
class HealthCheck(BaseModel):
"""Response model to validate and return when performing a health check."""
status: str = "OK"
class QueryInputModel(BaseModel):
language: DropDownInputLanguage # type: ignore
text: str = ""
audio: str = ""
context: Context # type: ignore
class QueryOuputModel(BaseModel):
format: DropdownOutputFormat # type: ignore
class QueryModel(BaseModel):
input: QueryInputModel
output: QueryOuputModel
# Telemetry API logs middleware
app.add_middleware(TelemetryMiddleware)
@app.get("/", include_in_schema=False)
async def root():
return {"message": "Welcome to Sakhi API Service"}
@app.get(
"/health",
tags=["Health Check"],
summary="Perform a Health Check",
response_description="Return HTTP Status Code 200 (OK)",
status_code=status.HTTP_200_OK,
response_model=HealthCheck,
include_in_schema=True
)
def get_health() -> HealthCheck:
"""
## Perform a Health Check
Endpoint to perform a healthcheck on. This endpoint can primarily be used Docker
to ensure a robust container orchestration and management is in place. Other
services which rely on proper functioning of the API service will not deploy if this
endpoint returns any other HTTP status code except 200 (OK).
Returns:
HealthCheck: Returns a JSON response with the health status
"""
return HealthCheck(status="OK")
@app.post("/v1/query", tags=["Q&A over Document Store"], include_in_schema=True)
async def query(request: QueryModel, x_request_id: str = Header(None, alias="X-Request-ID")) -> ResponseForQuery:
load_dotenv()
indices = json.loads(get_from_env_or_config('database', 'indices', None))
language = request.input.language.name
context = request.input.context.name
output_format = request.output.format.name
index_id = indices.get(context.lower())
audio_url = request.input.audio
query_text = request.input.text
is_audio = False
text = None
regional_answer = None
audio_output_url = None
logger.info({"label": "query", "query_text": query_text, "index_id": index_id, "context": context, "input_language": language, "output_format": output_format, "audio_url": audio_url})
if not query_text and not audio_url:
raise HTTPException(status_code=422, detail="Either 'text' or 'audio' should be present!")
if query_text:
text, error_message = process_incoming_text(query_text, language)
if output_format == "audio":
is_audio = True
else:
if not is_url(audio_url) and not is_base64(audio_url):
logger.error({"index_id": index_id, "query": query_text, "input_language": language, "output_format": output_format, "audio_url": audio_url, "status_code": status.HTTP_422_UNPROCESSABLE_ENTITY, "error_message": "Invalid audio input!"})
raise HTTPException(status_code=status.HTTP_422_UNPROCESSABLE_ENTITY, detail="Invalid audio input!")
query_text, text, error_message = process_incoming_voice(audio_url, language)
is_audio = True
if text is not None:
answer, error_message, status_code = querying_with_langchain_gpt3(index_id, text, context)
if len(answer) != 0:
regional_answer, error_message = process_outgoing_text(answer, language)
logger.info({"regional_answer": regional_answer})
if regional_answer is not None:
if is_audio:
output_file, error_message = process_outgoing_voice(regional_answer, language)
if output_file is not None:
storage.upload_to_storage(output_file.name)
audio_output_url, error_message = storage.generate_public_url(output_file.name)
logger.debug(f"Audio Ouput URL ===> {audio_output_url}")
output_file.close()
os.remove(output_file.name)
else:
status_code = 503
else:
audio_output_url = ""
else:
status_code = 503
else:
status_code = 503
if status_code != 200:
logger.error({"index_id": index_id, "query": query_text, "input_language": language, "output_format": output_format, "audio_url": audio_url, "status_code": status_code, "error_message": error_message})
raise HTTPException(status_code=status_code, detail=error_message)
response = ResponseForQuery(output=OutputResponse(text=regional_answer, audio=audio_output_url, language=language, format=output_format))
logger.info({"x_request_id": x_request_id, "query": query_text, "text": text, "response": response})
return response
@app.post("/v1/chat", tags=["Conversation chat over Document Store"], include_in_schema=True)
async def chat(request: QueryModel, x_request_id: str = Header(None, alias="X-Request-ID"),
x_source: str = Header(None, alias="x-source"),
x_consumer_id: str = Header(None, alias="x-consumer-id")) -> ResponseForQuery:
load_dotenv()
indices = json.loads(get_from_env_or_config('database', 'indices', None))
language = request.input.language.name
context = request.input.context.name
output_format = request.output.format.name
index_id = indices.get(context.lower())
audio_url = request.input.audio
query_text = request.input.text
is_audio = False
text = None
regional_answer = None
audio_output_url = None
logger.info({"label": "query", "query_text": query_text, "index_id": index_id, "context": context, "input_language": language, "output_format": output_format, "audio_url": audio_url})
redis_session_id = prepare_redis_key(x_source, x_consumer_id, context)
logger.info(f"Redis session ID :: {redis_session_id} ")
if not query_text and not audio_url:
raise HTTPException(status_code=422, detail="Either 'text' or 'audio' should be present!")
if query_text:
text, error_message = process_incoming_text(query_text, language)
if output_format == "audio":
is_audio = True
else:
if not is_url(audio_url) and not is_base64(audio_url):
logger.error({"index_id": index_id, "query": query_text, "input_language": language, "output_format": output_format, "audio_url": audio_url, "status_code": status.HTTP_422_UNPROCESSABLE_ENTITY, "error_message": "Invalid audio input!"})
raise HTTPException(status_code=status.HTTP_422_UNPROCESSABLE_ENTITY, detail="Invalid audio input!")
query_text, text, error_message = process_incoming_voice(audio_url, language)
is_audio = True
if text is not None:
answer, error_message, status_code = conversation_retrieval_chain(index_id, text, redis_session_id, context)
if len(answer) != 0:
regional_answer, error_message = process_outgoing_text(answer, language)
logger.info({"regional_answer": regional_answer})
if regional_answer is not None:
if is_audio:
output_file, error_message = process_outgoing_voice(regional_answer, language)
if output_file is not None:
storage.upload_to_storage(output_file.name)
audio_output_url, error_message = storage.generate_public_url(output_file.name)
logger.debug(f"Audio Ouput URL ===> {audio_output_url}")
output_file.close()
os.remove(output_file.name)
else:
status_code = 503
else:
audio_output_url = ""
else:
status_code = 503
else:
status_code = 503
if status_code != 200:
logger.error({"index_id": index_id, "query": query_text, "input_language": language, "output_format": output_format, "audio_url": audio_url, "status_code": status_code, "error_message": error_message})
raise HTTPException(status_code=status_code, detail=error_message)
response = ResponseForQuery(output=OutputResponse(text=regional_answer, audio=audio_output_url, language=language, format=output_format))
logger.info({"x_request_id": x_request_id, "query": query_text, "text": text, "response": response})
return response