-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_psycopg.py
204 lines (171 loc) · 6.44 KB
/
test_psycopg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import numpy as np
import psycopg
import pytest
from psycopg import Connection, sql
from pgvecto_rs.psycopg import register_vector
from pgvecto_rs.types import BinaryVector, Float16Vector
from tests import (
BINARY_VECTORS,
COSINE_DIS_OP,
FILTER_VALUE,
FLOAT16_OP,
FLOAT16_VECTORS,
INDEX_OPTIONS,
INVALID_VECTORS,
JACCARD_DIS_OP,
L2_DIS_OP,
MAX_INNER_PROD_OP,
SPARSE_OP,
SPARSE_VECTORS,
URL,
VECTORS,
cosine_distance,
jaccard_distance,
l2_distance,
max_inner_product,
)
@pytest.fixture()
def session():
with psycopg.connect(URL) as conn:
conn.execute("CREATE EXTENSION IF NOT EXISTS vectors;")
register_vector(conn)
conn.execute("DROP TABLE IF EXISTS tb_test_item;")
conn.execute(
"CREATE TABLE tb_test_item (id bigserial PRIMARY KEY, \
embedding vector(3) NOT NULL, sparse_embedding svector(3), \
float16_embedding vecf16(3), binary_embedding bvector(3));",
)
conn.commit()
try:
yield conn
finally:
conn.execute("DROP TABLE IF EXISTS tb_test_item;")
conn.commit()
@pytest.mark.parametrize(("index_name", "index_option"), INDEX_OPTIONS.items())
def test_create_index(session: Connection, index_name: str, index_option: str):
create_items(session)
stat = sql.SQL(
"CREATE INDEX {} ON tb_test_item USING vectors (embedding vector_l2_ops) WITH (options={});",
).format(sql.Identifier(index_name), index_option)
session.execute(stat)
session.commit()
def test_invalid_insert(session: Connection):
for i, e in enumerate(INVALID_VECTORS):
try:
session.execute("INSERT INTO tb_test_item (embedding) VALUES (%s);", (e,))
except Exception:
session.rollback()
else:
session.rollback()
raise AssertionError(
"failed to raise invalid value error for {}th vector {}".format(i, e),
)
# =================================
# Semetic search tests
# =================================
def test_copy(session: Connection):
with session.cursor() as cursor, cursor.copy(
"COPY tb_test_item (embedding, sparse_embedding, float16_embedding, binary_embedding) \
FROM STDIN (FORMAT BINARY)"
) as copy:
for e in zip(VECTORS, SPARSE_VECTORS, FLOAT16_VECTORS, BINARY_VECTORS):
copy.write_row(e)
session.commit()
cur = session.execute("SELECT embedding FROM tb_test_item;", binary=True)
rows = cur.fetchall()
# query dense
assert len(rows) == len(VECTORS)
for i, (e,) in enumerate(rows):
assert np.allclose(e.to_numpy(), VECTORS[i], atol=1e-10)
# query sparse
cur = session.execute("SELECT * FROM tb_test_item;", binary=True)
rows = cur.fetchall()
assert len(rows) == len(VECTORS)
assert str(rows[0][1].to_list()) == "[1.0, 2.0, 3.0]"
assert str(rows[1][1].to_list()) == "[7.0, 7.0, 7.0]"
assert str(rows[3][1].to_list()) == "[1.0, 1.0, 1.0]"
session.execute("Delete FROM tb_test_item;")
session.commit()
def create_items(session: Connection):
with session.cursor() as cur:
data = zip(VECTORS, SPARSE_VECTORS, FLOAT16_VECTORS, BINARY_VECTORS)
cur.executemany(
"INSERT INTO tb_test_item (embedding, sparse_embedding, float16_embedding, binary_embedding) VALUES (%s, %s, %s, %s);",
[e for e in data],
)
cur.execute("SELECT * FROM tb_test_item;")
session.commit()
rows = cur.fetchall()
assert len(rows) == len(VECTORS)
for i, e in enumerate(rows):
assert np.allclose(e[1].to_numpy(), VECTORS[i], atol=1e-10)
def test_l2_distance(session: Connection):
create_items(session)
cur = session.execute(
"SELECT embedding, embedding <-> %s FROM tb_test_item;",
(L2_DIS_OP,),
)
for emb, dis in cur.fetchall():
expect = l2_distance(np.array(L2_DIS_OP), emb.to_numpy())
assert np.allclose(expect, dis, atol=1e-10)
def test_max_inner_product(session: Connection):
create_items(session)
cur = session.execute(
"SELECT embedding, embedding <#> %s FROM tb_test_item;",
(MAX_INNER_PROD_OP,),
)
for emb, dis in cur.fetchall():
expect = max_inner_product(np.array(MAX_INNER_PROD_OP), emb.to_numpy())
assert np.allclose(expect, dis, atol=1e-10)
def test_cosine_distance(session: Connection):
create_items(session)
cur = session.execute(
"SELECT embedding, embedding <=> %s FROM tb_test_item;", (COSINE_DIS_OP,)
)
for emb, dis in cur.fetchall():
expect = cosine_distance(np.array(COSINE_DIS_OP), emb.to_numpy())
assert np.allclose(expect, dis, atol=1e-10)
def test_binary_jaccard_distance(session: Connection):
create_items(session)
cur = session.execute(
"SELECT binary_embedding, binary_embedding <~> %s FROM tb_test_item;",
(BinaryVector(JACCARD_DIS_OP),),
)
for emb, dis in cur.fetchall():
expect = jaccard_distance(JACCARD_DIS_OP, emb.to_numpy())
assert np.allclose(expect, dis, atol=1e-10)
def test_float16_vector(session):
create_items(session)
cur = session.execute(
"SELECT float16_embedding, float16_embedding <-> %s FROM tb_test_item;",
(Float16Vector(FLOAT16_OP),),
)
for emb, dis in cur.fetchall():
expect = l2_distance(FLOAT16_OP, emb.to_numpy())
assert np.allclose(expect, dis, atol=1e-2)
def test_sparse_vector(session):
create_items(session)
cur = session.execute(
"SELECT sparse_embedding, sparse_embedding <-> %s FROM tb_test_item;",
(SPARSE_OP,),
)
for emb, dis in cur.fetchall():
expect = l2_distance(SPARSE_OP.to_numpy(), emb.to_numpy())
assert np.allclose(expect, dis, atol=1e-10)
def test_filter(session):
create_items(session)
cur = session.execute(
"SELECT embedding <-> %s FROM tb_test_item WHERE embedding <-> %s < %s;",
(L2_DIS_OP, L2_DIS_OP, FILTER_VALUE),
)
for (dis,) in cur.fetchall():
assert dis < FILTER_VALUE
# =================================
# Suffix functional tests
# =================================
def test_delete(session: Connection):
create_items(session)
session.execute("DELETE FROM tb_test_item WHERE embedding = %s;", (VECTORS[0],))
session.commit()
cur = session.execute("SELECT * FROM tb_test_item;")
assert len(cur.fetchall()) == len(VECTORS) - 1