---
title: Sequence diagram create knowledge
---
sequenceDiagram
Admin->>+Agent: Put knowledge (pdf, web crawler)
Admin->>+Agent: create vector store
Agent->>+Embedding Model: create vector store
Embedding Model-->>-Agent: vector store
Agent->>-Storage: save vector store
---
title: Sequence diagram invoke agent
---
sequenceDiagram
User->>+Agent: Invoke agent
Agent->>+Embedding Model: get knowledge
Embedding Model->>Embedding Model: get knowledge from storage
Embedding Model-->>-Agent: knowledge
Agent->>Agent: create answer
Agent-->>-User: answer
---
title: Flow diagram depip agent
---
flowchart LR
subgraph "Depip agent"
subgraph "Agent"
direction TB
memory[memory]
agent-executor[agent executor]
tools[tools]
llm-model[LLM model]
agent-executor <--> memory
agent-executor <--> tools
agent-executor --> llm-model
end
subgraph "Embedding Model"
direction TB
web-crawled[web crawled]
pdf[files pdf]
embedding-model[embedding model]
vector-store[vector store]
s3 --> embedding-model --> vector-store
web-crawled --> embedding-model
pdf --> embedding-model
end
tools --> vector-store
end
---
title: Class diagram depip agent
---
classDiagram
direction TD
BaseModelLangchain --|> EmbeddingModel
EmbeddingsLangchain --|> EmbeddingModel
class EmbeddingModel{
embedding_model
createEmbeddingPDF()
loadVectorStore()
}
BaseChatModelLangchain --|> LLMModel
class LLMModel{
llm_model
}
class BaseModelLangchain{
}
class EmbeddingsLangchain{
}
class Agent{
invoke(query)
}
EmbeddingModel -- Agent
LLMModel -- Agent
Currently features:
- Chat with model with preload vector store (has knowledge about Story Protocol)
- Miniconda
- Python3
conda env create --file environment.yml
conda activate depip-agent
pip install -r requirements.txt
fastapi run app/main.py