forked from rstudio/bigdataclass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path05-modeling.Rmd
246 lines (199 loc) · 4.9 KB
/
05-modeling.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
---
Title: "Modeling"
output: html_notebook
---
## Class catchup
```{r}
library(tidyverse)
library(DBI)
library(dbplyr)
library(dbplot)
library(tidypredict)
con <- DBI::dbConnect(odbc::odbc(), "Postgres Dev")
airports <- tbl(con, in_schema("datawarehouse", "airport"))
table_flights <- tbl(con, in_schema("datawarehouse", "flight"))
carriers <- tbl(con, in_schema("datawarehouse", "carrier"))
set.seed(100)
```
## 5.1 - SQL Native sampling
1. Use `build_sql()` and `remote_query()` to combine a the `dplyr` command with a custom SQL statement
```{r}
sql_sample <- dbGetQuery(con, build_sql(remote_query(table_flights), " TABLESAMPLE SYSTEM (0.1)"))
```
2. Preview the sample data
```{r}
sql_sample
```
3. Test the efficacy of the sampling with a plot
```{r}
dbplot_histogram(sql_sample, distance)
```
## 5.2 - Sample with ID
1. Use `max()` to get the upper limit for *flightid*
```{r}
limit <- table_flights %>%
summarise(
max = max(flightid, na.rm = TRUE),
min = min(flightid, na.rm = TRUE)
) %>%
collect()
```
2. Use `sample` to get 0.1% of IDs
```{r}
sampling <- sample(
limit$min:limit$max,
round((limit$max -limit$min) * 0.001))
```
3. Use `%in%` to match the sample IDs in the *flight* table
```{r}
id_sample <- table_flights %>%
filter(flightid %in% sampling) %>%
collect()
```
Verify sample with a histogram
```{r}
dbplot_histogram(id_sample, distance)
```
## 5.3 - Sample manually
1. Create a filtered dataset for with 1 month of data
```{r}
db_month <- table_flights %>%
filter(month == 1)
```
2. Get the row count
```{r}
rows <- as.integer(pull(tally(db_month)))
```
3. Use `row_number()` to create a new column to number each row
```{r}
db_month <- db_month %>%
mutate(row = row_number())
```
4. Create a random set of 600 numbers, limited by the number of rows
```{r}
sampling <- sample(1:rows, 600)
```
5. Use `%in%` to filter the matched sample row IDs with the random set
```{r}
db_month <- db_month %>%
filter(row %in% sampling)
```
6. Verify number of rows
```{r}
tally(db_month)
```
7. Create a function with the previous steps, but replacing the month number with an argument. Collect the data at the end
```{r}
sample_segment <- function(x, size = 600) {
db_month <- table_flights %>%
filter(month == x)
rows <- as.integer(pull(tally(db_month)))
db_month <- db_month %>%
mutate(row = row_number())
sampling <- sample(1:rows, size)
db_month %>%
filter(row %in% sampling) %>%
collect()
}
```
8. Test the function
```{r}
head(sample_segment(3), 100)
```
9. Use `map_df()` to run the function for each month
```{r}
strat_sample <- 1:12 %>%
map_df(~sample_segment(.x))
```
10. Verify sample with a histogram
```{r}
dbplot_histogram(strat_sample, distance)
```
## 5.4 - Create a model & test
1. Prepare a model data set
```{r}
model_data <- strat_sample %>%
mutate(
season = case_when(
month >= 3 & month <= 5 ~ "Spring",
month >= 6 & month <= 8 ~ "Summmer",
month >= 9 & month <= 11 ~ "Fall",
month == 12 | month <= 2 ~ "Winter"
)
) %>%
select(arrdelay, season, depdelay)
```
2. Create a simple `lm()` model
```{r}
model_lm <- lm(arrdelay ~ . , data = model_data)
summary(model_lm)
```
3. Create a test data set by combining the sampling and model data set routines. Set the `sample_segment()` `size` to 100
```{r}
```
4. Run a simple routine to check accuracy
```{r}
test_sample %>%
mutate(p = predict(model_lm, test_sample),
over = abs(p - arrdelay) < 10) %>%
group_by(over) %>%
tally() %>%
mutate(percent = round(n / sum(n), 2))
```
## 5.5 - Score inside database
1. Load the library, and see the results of passing the model as an argument to `tidypredict_fit()`
```{r}
library(tidypredict)
tidypredict_fit(model_lm)
```
2. Use `tidypredict_sql()` to see the resulting SQL statement
```{r}
tidypredict_sql(model_lm, con)
```
3. Run the prediction inside `dplyr`
```{r}
table_flights %>%
filter(month == 2,
dayofmonth == 1) %>%
mutate(
season = case_when(
month >= 3 & month <= 5 ~ "Spring",
month >= 6 & month <= 8 ~ "Summmer",
month >= 9 & month <= 11 ~ "Fall",
month == 12 | month <= 2 ~ "Winter"
)
) %>%
select( season, depdelay) %>%
tidypredict_to_column(model_lm) %>%
head()
```
4. View the SQL behind the `dplyr` command. Use `remote_query()`
```{r}
```
5. Compare predictions to ensure results are within range
```{r}
test <- tidypredict_test(model_lm)
test
```
6. View any records that exceeded the threshold
```{r}
test$raw_results %>%
filter(fit_threshold)
```
## 5.6 - Parsed model
1. Use the `parse_model()` function to see how `tidypredict` interprets the model
```{r}
pm <- parse_model(model_lm)
pm
```
2. Verify that the resulting table can be used to get the fit formula
```{r}
tidypredict_test(model_lm)
```
3. Using `write_csv()`, save the parsed model for later use
```{r}
```
4. Disconnect from the database
```{r}
dbDisconnect(con)
```