-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvrt_pulsar.cpp
675 lines (541 loc) · 26.8 KB
/
vrt_pulsar.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
#include <zmq.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <unistd.h>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/program_options.hpp>
#include <boost/filesystem.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/thread/thread.hpp>
#include <chrono>
// #include <complex>
#include <csignal>
#include <fstream>
#include <iostream>
#include <thread>
// VRT
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <vrt/vrt_read.h>
#include <vrt/vrt_string.h>
#include <vrt/vrt_types.h>
#include <vrt/vrt_util.h>
#include <complex.h>
#include <fftw3.h>
#include "vrt-tools.h"
#ifdef __APPLE__
#define DEFAULT_GNUPLOT_TERMINAL "qt"
#else
#define DEFAULT_GNUPLOT_TERMINAL "x11"
#endif
namespace po = boost::program_options;
#define REAL 0
#define IMAG 1
#define SQUELCH_THRESHOLD (0.02)
static bool stop_signal_called = false;
void sig_int_handler(int)
{
stop_signal_called = true;
}
template <typename samp_type> inline float get_abs_val(samp_type t)
{
return std::fabs(t);
}
inline float get_abs_val(std::complex<int16_t> t)
{
return std::fabs(t.real());
}
inline float get_abs_val(std::complex<int8_t> t)
{
return std::fabs(t.real());
}
inline void swap(float *p,float *q) {
float t;
t=*p;
*p=*q;
*q=t;
}
inline void sort(float a[],int n) {
int i,j;
for(i = 0;i < n-1;i++) {
for(j = 0;j < n-i-1;j++) {
if(a[j] > a[j+1])
swap(&a[j],&a[j+1]);
}
}
}
float dm_time(float dm, float freq_mhz) {
// for a DM of 1 we expect 4148.8 usec delay at 1 GHZ.
return 4148.8 * dm / (freq_mhz*freq_mhz);
}
int main(int argc, char* argv[])
{
// FFTW
fftw_complex **signal, *result;
fftw_plan plan[2];
float **mean_freq;
float **mean_time;
float ***data_block;
float *median_freq;
float *median_time;
float **dedisp;
int *dispersion;
float **plotbuffer;
FILE *audio_pipe;
uint32_t num_bins = 0;
float block_time;
uint32_t block_size;
float f_threshold;
float t_threshold;
// variables to be set by po
std::string file, type, zmq_address, channel_list, gnuplot_terminal;
size_t num_requested_samples;
uint32_t bins;
int gain;
double total_time;
uint16_t instance, main_port, port;
uint32_t channel;
int hwm;
float dm, period, agg_time;
uint64_t seqno[] = {0, 0};
float mean_block[] = {0, 0};
int time_integrations;
int buffer_size;
float period_samples_float, amplitude;
int period_samples_int;
// setup the program options
po::options_description desc("Allowed options");
// clang-format off
desc.add_options()
("help", "help message")
("nsamps", po::value<size_t>(&num_requested_samples)->default_value(0), "total number of samples to receive")
("duration", po::value<double>(&total_time)->default_value(0), "total number of seconds to receive")
("progress", "periodically display short-term bandwidth")
// ("channel", po::value<uint32_t>(&channel)->default_value(0), "VRT channel")
("channel", po::value<std::string>(&channel_list)->default_value("0"), "which VRT channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)")
("int-second", "align start of reception to integer second")
("num-bins", po::value<uint32_t>(&num_bins)->default_value(2000), "number of bins")
("block-time", po::value<float>(&block_time)->default_value(0.1), "block time (seconds)")
("f-threshold", po::value<float>(&f_threshold)->default_value(1.15), "frequency cut threshold")
("t-threshold", po::value<float>(&t_threshold)->default_value(1.2), "time cut threshold")
("dm", po::value<float>(&dm)->default_value(26.8), "PSR Dispersion Measure")
("period", po::value<float>(&period)->default_value(0.7145197), "PSR Period")
("agg-time", po::value<float>(&agg_time)->default_value(1), "Aggregation time in milliseconds")
("amplitude", po::value<float>(&litude)->default_value(1), "amplitude correction of second channel")
("term", po::value<std::string>(&gnuplot_terminal)->default_value(DEFAULT_GNUPLOT_TERMINAL), "Gnuplot terminal (x11 or qt)")
("quiet", "no data output")
("sum", "sum polarizations")
("audio", "enable audio")
("squelch", "audio squelch")
("gain", po::value<int>(&gain)->default_value(8), "audio gain")
("gnuplot", "enable gnuplot mode")
("null", "run without writing to file")
("continue", "don't abort on a bad packet")
("address", po::value<std::string>(&zmq_address)->default_value("localhost"), "VRT ZMQ address")
("zmq-split", "create a ZeroMQ stream per VRT channel, increasing port number for additional streams")
("instance", po::value<uint16_t>(&instance)->default_value(0), "VRT ZMQ instance")
("port", po::value<uint16_t>(&port), "VRT ZMQ port")
("hwm", po::value<int>(&hwm)->default_value(10000), "VRT ZMQ HWM")
;
// clang-format on
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
// print the help message
if (vm.count("help")) {
std::cout << boost::format("VRT pulsar processing. %s") % desc << std::endl;
std::cout << std::endl
<< "This application processes pulsar data from "
"a VRT stream.\n"
<< std::endl;
return ~0;
}
bool progress = vm.count("progress") > 0;
bool stats = vm.count("stats") > 0;
bool null = vm.count("null") > 0;
bool audio = vm.count("audio") > 0;
bool gnuplot = vm.count("gnuplot") > 0;
bool sum = vm.count("sum") > 0;
bool continue_on_bad_packet = vm.count("continue") > 0;
bool quiet = vm.count("quiet") > 0;
bool squelch = vm.count("squelch") > 0;
bool int_second = (bool)vm.count("int-second");
bool zmq_split = vm.count("zmq-split") > 0;
context_type vrt_context;
init_context(&vrt_context);
packet_type vrt_packet;
if (vm.count("port") > 0) {
main_port = port;
} else {
main_port = DEFAULT_MAIN_PORT + MAX_CHANNELS*instance;
}
vrt_packet.channel_filt = 0;
// detect which channels to use
std::vector<std::string> channel_strings;
std::vector<size_t> channel_nums;
boost::split(channel_strings, channel_list, boost::is_any_of("\"',"));
for (size_t ch = 0; ch < channel_strings.size(); ch++) {
size_t chan = std::stoi(channel_strings[ch]);
channel_nums.push_back(std::stoi(channel_strings[ch]));
vrt_packet.channel_filt |= 1<<std::stoi(channel_strings[ch]);
}
if (channel_nums.size() > 2) {
printf("More than 2 channels not supported.\n");
exit(1);
}
if (zmq_split) {
if (channel_nums.size()>1) {
printf("Multiple channels with --zmq-split is not supported.\n");
exit(EXIT_FAILURE);
}
main_port += channel_nums[0];
channel_nums[0] = 0;
vrt_packet.channel_filt = 1;
}
// FILE *write_ptr;
// write_ptr = fopen("dedisp.fc32","wb"); // w for write, b for binary
// ZMQ
void *context = zmq_ctx_new();
void *subscriber = zmq_socket(context, ZMQ_SUB);
int rc = zmq_setsockopt (subscriber, ZMQ_RCVHWM, &hwm, sizeof hwm);
std::string connect_string = "tcp://" + zmq_address + ":" + std::to_string(main_port);
rc = zmq_connect(subscriber, connect_string.c_str());
assert(rc == 0);
zmq_setsockopt(subscriber, ZMQ_SUBSCRIBE, "", 0);
bool first_frame = true;
// time keeping
auto start_time = std::chrono::steady_clock::now();
auto stop_time =
start_time + std::chrono::milliseconds(int64_t(1000 * total_time));
uint32_t buffer[ZMQ_BUFFER_SIZE];
unsigned long long num_total_samps = 0;
// Track time and samps between updating the BW summary
auto last_update = start_time;
unsigned long long last_update_samps = 0;
bool start_rx = false;
uint64_t last_fractional_seconds_timestamp = 0;
uint32_t signal_pointer[] = {0, 0};
uint32_t block_counter[] = {0, 0};
uint32_t integration_counter[] = {0, 0};
bool first_block = true;
while (not stop_signal_called
and (num_requested_samples > num_total_samps or num_requested_samples == 0) ) {
int len = zmq_recv(subscriber, buffer, ZMQ_BUFFER_SIZE, 0);
const auto now = std::chrono::steady_clock::now();
if (not vrt_process(buffer, sizeof(buffer), &vrt_context, &vrt_packet)) {
printf("Not a Vita49 packet?\n");
continue;
}
if (not vrt_packet.context and not vrt_packet.data)
continue;
uint32_t ch = 0;
for(ch = 0; ch<channel_nums.size(); ch++)
if (vrt_packet.stream_id & (1 << channel_nums[ch]) )
break;
uint32_t channel = channel_nums[ch];
if (not start_rx and vrt_packet.context) {
vrt_print_context(&vrt_context);
start_rx = true;
if (total_time > 0)
num_requested_samples = total_time * vrt_context.sample_rate;
block_size = block_time*vrt_context.sample_rate/num_bins;
time_integrations = agg_time*(vrt_context.sample_rate/num_bins)/1000;
signal = (fftw_complex **)malloc(sizeof(fftw_complex*)*channel_nums.size());
for (size_t ch=0; ch < channel_nums.size(); ch++)
signal[ch] = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * num_bins);
result = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * num_bins);
for (size_t ch=0; ch < channel_nums.size(); ch++)
plan[ch] = fftw_plan_dft_1d(num_bins, signal[ch], result, FFTW_FORWARD, FFTW_ESTIMATE);
data_block = (float ***)malloc(sizeof(float *)*channel_nums.size());
for (size_t ch=0; ch < channel_nums.size(); ch++) {
data_block[ch] = (float **)malloc(sizeof(float *)*num_bins);
for(size_t i=0; i < num_bins; i++) {
data_block[ch][i] = (float *)malloc( 2 * sizeof(float)*block_size);
}
}
mean_freq = (float **)malloc(sizeof(float *)*channel_nums.size());
mean_time = (float **)malloc(sizeof(float *)*channel_nums.size());
for (size_t ch=0; ch < channel_nums.size(); ch++) {
mean_freq[ch] = (float*)malloc(num_bins * sizeof(float));
mean_time[ch] = (float*)malloc(block_size * sizeof(float));
}
median_freq = (float*)malloc(num_bins * sizeof(float));
median_time = (float*)malloc(block_size * sizeof(float));
dedisp = (float **)malloc(sizeof(float *)*channel_nums.size());
for (size_t ch=0; ch < channel_nums.size(); ch++)
dedisp[ch] = (float*)malloc( (block_size/time_integrations) * sizeof(float));
dispersion = (int*)malloc(num_bins*sizeof(int));
// gnuplot
buffer_size = 4 * (1000.0/agg_time); // 4 seconds
plotbuffer = (float **)malloc(sizeof(float *)*channel_nums.size());
for (size_t ch=0; ch < channel_nums.size(); ch++)
plotbuffer[ch] = (float*)malloc(buffer_size * sizeof(float));
// data
period_samples_float = (1000.0/agg_time)*period;
period_samples_int = floor(period_samples_float);
// create dispersion table
float freq_bin0 = (double)(vrt_context.rf_freq - vrt_context.sample_rate/2);
float disp_bin0 = dm_time(dm,freq_bin0/1e6) * (float)vrt_context.sample_rate/(float(num_bins));
for(size_t chan=0; chan < num_bins; chan++) {
float freq = (double)(vrt_context.rf_freq + (chan*(double)vrt_context.sample_rate/(double)num_bins) - vrt_context.sample_rate/2);
float disp = dm_time(dm,freq/1e6) * (float)vrt_context.sample_rate/(float(num_bins)) - disp_bin0;
dispersion[chan] = (int)disp;
}
printf("# Spectrum parameters:\n");
printf("# Bins: %u\n", num_bins);
printf("# Bin size [Hz]: %.2f\n", ((double)vrt_context.sample_rate)/((double)num_bins));
printf("# Block size: %u\n", block_size);
printf("# Aggregations: %u\n", time_integrations);
// Gnuplot
if (gnuplot)
printf("set terminal %s noraise; unset mouse; set grid;\n", gnuplot_terminal.c_str());
// set terminal x11;
// set yrange [0:200000000] set xtics 1; set ytics 1;
if (audio) {
uint32_t audio_rate = round(1000.0/agg_time);
uint32_t num_chans = sum ? 1 : channel_nums.size();
std::string sox_command = "play -q -r " + std::to_string(audio_rate)
+ " --input-buffer 4000 --buffer 500 -c "
+ std::to_string(num_chans)
+ " -b 16 -e signed-integer -t raw - lowpass 200 rate 40k gain -l "
+ std::to_string(gain);
audio_pipe = popen(sox_command.c_str(), "w");
if (!audio_pipe)
{
printf("Error starting Sox play.\n");
return EXIT_FAILURE;
}
}
}
if (start_rx and vrt_packet.data) {
if (vrt_packet.lost_frame)
if (not continue_on_bad_packet)
break;
if (int_second) {
// check if fractional second has wrapped
if (vrt_packet.fractional_seconds_timestamp > last_fractional_seconds_timestamp ) {
last_fractional_seconds_timestamp = vrt_packet.fractional_seconds_timestamp;
continue;
} else {
int_second = false;
last_update = now;
start_time = now;
}
}
if (first_block and (ch!=0) ) {
continue;
} else {
first_block = false;
}
int mult = 1;
for (uint32_t i = 0; i < vrt_packet.num_rx_samps; i++) {
int16_t re;
memcpy(&re, (char*)&buffer[vrt_packet.offset+i], 2);
int16_t img;
memcpy(&img, (char*)&buffer[vrt_packet.offset+i]+2, 2);
if (ch==1) {
signal[ch][signal_pointer[ch]][REAL] = amplitude*mult*re;
signal[ch][signal_pointer[ch]][IMAG] = amplitude*mult*img;
} else {
signal[ch][signal_pointer[ch]][REAL] = mult*re;
signal[ch][signal_pointer[ch]][IMAG] = mult*img;
}
mult *= -1; // fftshift
signal_pointer[ch]++;
if (signal_pointer[ch] >= num_bins) {
signal_pointer[ch] = 0;
fftw_execute(plan[ch]);
uint64_t seconds = vrt_packet.integer_seconds_timestamp;
uint64_t frac_seconds = vrt_packet.fractional_seconds_timestamp;
frac_seconds += (i+1)*1e12/vrt_context.sample_rate;
if (frac_seconds > 1e12) {
frac_seconds -= 1e12;
seconds++;
}
float sum_channels = 0;
for (uint32_t i = 0; i < num_bins; ++i) {
float mag = sqrt(result[i][REAL] * result[i][REAL] +
result[i][IMAG] * result[i][IMAG]);
data_block[ch][i][block_size+block_counter[ch]] = mag;
mean_freq[ch][i] += mag/(float)block_size;
sum_channels += mag;
}
mean_time[ch][block_counter[ch]] = sum_channels/(float)num_bins;
block_counter[ch]++;
if (block_counter[ch] == block_size) {
// mow the lawn!
memcpy(median_freq, mean_freq[ch], num_bins * sizeof(float));
memcpy(median_time, mean_time[ch], block_size * sizeof(float));
sort(median_freq,num_bins);
sort(median_time,block_size);
float thresh_freq = f_threshold*median_freq[(num_bins+1)/2-1];
float thresh_time = t_threshold*median_time[(block_size+1)/2-1];
float freq_med = median_freq[(num_bins+1)/2-1];
float time_med = median_time[(block_size+1)/2-1];
int clean = 0;
for (size_t chan = 0; chan < num_bins; chan++)
for (size_t block = 0; block < block_size; block++) {
if ( mean_freq[ch][chan] > thresh_freq ) {
data_block[ch][chan][block_size+block] = freq_med;
clean++;
continue;
}
if ( mean_time[ch][block] > thresh_time) {
data_block[ch][chan][block_size+block] = time_med;
clean++;
}
}
// now what?
// dedisperse and aggregate
for (size_t index = 0; index < block_size/time_integrations; index++) {
dedisp[ch][index] = 0;
}
for(size_t chan=0; chan < num_bins; chan++) {
for (size_t index = 0; index < block_size/time_integrations; index++) {
for (size_t j=0; j<time_integrations; j++) {
dedisp[ch][index] += data_block[ch][chan][block_size+index*time_integrations+j+dispersion[chan]];
}
}
}
// for data analysis:
// fwrite(dedisp,sizeof(float)*block_size/time_integrations,1,write_ptr);
float max_block = 0;
mean_block[ch] = 0;
for (size_t index = 0; index < block_size/time_integrations; index++) {
// sum to avg
dedisp[ch][index] /= num_bins*(block_size/time_integrations);
// mean of block
mean_block[ch] += dedisp[ch][index];
if (dedisp[ch][index]>max_block)
max_block = dedisp[ch][index];
}
mean_block[ch] = mean_block[ch]/(block_size/time_integrations);
// if (!first_block) {
for (size_t index = 0; index < block_size/time_integrations; index++) {
plotbuffer[ch][seqno[ch] % buffer_size] = dedisp[ch][index];
if (!gnuplot and !quiet) {
if (channel_nums.size()==2) {
if (ch==1) {
if (sum) {
printf("%i %i %f\n",period_samples_int,(int)floor(fmod(seqno[ch],period_samples_float)), dedisp[0][index] + dedisp[1][index]);
} else {
printf("%i %i %f %f\n",period_samples_int,(int)floor(fmod(seqno[ch],period_samples_float)), dedisp[0][index], dedisp[1][index]);
}
}
} else {
printf("%i %i %f\n",period_samples_int,(int)floor(fmod(seqno[ch],period_samples_float)), dedisp[ch][index]);
}
}
if (audio){
if (channel_nums.size()==2) {
if (ch==1) {
if (sum) {
// write sum on single channel
int16_t sample = 32768.0*(dedisp[0][index]-mean_block[0])/mean_block[0] +
32768.0*(dedisp[1][index]-mean_block[1])/mean_block[1];
if (squelch and sample < 2*SQUELCH_THRESHOLD*32768.0)
sample = 0;
fwrite(&sample, sizeof(sample), 1, audio_pipe);
} else {
// write 2 channels
int16_t sample = 32768.0*(dedisp[0][index]-mean_block[0])/mean_block[0];
if (squelch and sample < SQUELCH_THRESHOLD*32768.0)
sample = 0;
fwrite(&sample, sizeof(sample), 1, audio_pipe);
sample = 32768.0*(dedisp[1][index]-mean_block[1])/mean_block[1];
if (squelch and sample < SQUELCH_THRESHOLD*32768.0)
sample = 0;
fwrite(&sample, sizeof(sample), 1, audio_pipe);
}
}
} else {
// single channel
int16_t sample = 32768.0* (dedisp[ch][index]-mean_block[ch])/mean_block[ch];
if (squelch and sample < SQUELCH_THRESHOLD*32768.0)
sample = 0;
fwrite(&sample, sizeof(sample), 1, audio_pipe);
}
}
seqno[ch]++;
}
// }
// first_block = false;
if (audio)
fflush(audio_pipe);
fflush(stdout);
// copy current data block to first position (for dedispersion of the next block)
for(size_t i=0; i < num_bins; i++) {
memcpy(&data_block[ch][i][0], &data_block[ch][i][block_size], sizeof(float)*block_size);
}
// gnuplot
if (gnuplot) {
float mean_plot_buffer = 0;
for (i = 0; i< buffer_size; i++) {
mean_plot_buffer += plotbuffer[ch][i];
}
mean_plot_buffer /= buffer_size;
float time_per_sample = vrt_context.sample_rate/(num_bins*time_integrations);
if (channel_nums.size()==2) {
if (seqno[0] == seqno[1]) {
printf("set xrange [%.2lf:%.2lf];\n", seqno[0]/time_per_sample, (seqno[0] + buffer_size)/time_per_sample);
printf("set yrange [%.2lf:%.2lf];\n", mean_plot_buffer*0.97, mean_plot_buffer*1.5);
printf("plot '-' u 1:2 notitle w l, '-' u 1:3 notitle w l\n");
for (i = 0; i< buffer_size; i++) {
printf("%lf\t%lf\t%lf\n",(seqno[0]+i)/time_per_sample, plotbuffer[0][(seqno[0]+i)%buffer_size], plotbuffer[1][(seqno[1]+i)%buffer_size] );
}
printf("e\n");
}
} else {
printf("set xrange [%.2lf:%.2lf];\n",seqno[ch]/time_per_sample, (seqno[ch] + buffer_size)/time_per_sample);
printf("set yrange [%.2lf:%.2lf];\n", mean_plot_buffer*0.97, mean_plot_buffer*1.5);
printf("plot '-' u 1:2 notitle w l\n");
for (i = 0; i< buffer_size; i++)
printf("%lf\t%lf\n",(seqno[ch]+i)/time_per_sample, plotbuffer[ch][(seqno[ch]+i)%buffer_size]);
printf("e\n");
}
}
// clean-up
memset(mean_freq[ch], 0 , num_bins * sizeof(float));
block_counter[ch] = 0;
}
}
}
num_total_samps += vrt_packet.num_rx_samps;
}
if (progress) {
if (vrt_packet.data)
last_update_samps += vrt_packet.num_rx_samps;
const auto time_since_last_update = now - last_update;
if (time_since_last_update > std::chrono::seconds(1)) {
const double time_since_last_update_s =
std::chrono::duration<double>(time_since_last_update).count();
const double rate = double(last_update_samps) / time_since_last_update_s;
std::cout << "\t" << (rate / 1e6) << " Msps, ";
last_update_samps = 0;
last_update = now;
float sum_i = 0;
uint32_t clip_i = 0;
double datatype_max = 32768.;
for (int i=0; i<vrt_packet.num_rx_samps; i++ ) {
auto sample_i = get_abs_val((std::complex<int16_t>)buffer[vrt_packet.offset+i]);
sum_i += sample_i;
if (sample_i > datatype_max*0.99)
clip_i++;
}
sum_i = sum_i/vrt_packet.num_rx_samps;
std::cout << boost::format("%.0f") % (100.0*log2(sum_i)/log2(datatype_max)) << "% I (";
std::cout << boost::format("%.0f") % ceil(log2(sum_i)+1) << " of ";
std::cout << (int)ceil(log2(datatype_max)+1) << " bits), ";
std::cout << "" << boost::format("%.0f") % (100.0*clip_i/vrt_packet.num_rx_samps) << "% I clip, ";
std::cout << std::endl;
}
}
}
zmq_close(subscriber);
zmq_ctx_destroy(context);
return 0;
}