forked from TachibanaYoshino/AnimeGANv3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
91 lines (75 loc) · 3.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from AnimeGANv3_shinkai import AnimeGANv3
import argparse
from tools.utils import *
import os, time
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
"""parsing and configuration"""
def parse_args():
desc = "AnimeGANv3"
parser = argparse.ArgumentParser(description=desc)
# parser.add_argument('--style_dataset', type=str, default='Hayao', help='dataset_name')
parser.add_argument('--style_dataset', type=str, default='Shinkai', help='dataset_name')
parser.add_argument('--init_G_epoch', type=int, default=5, help='The number of epochs for generator initialization')
parser.add_argument('--epoch', type=int, default=100, help='The number of epochs to run')
parser.add_argument('--batch_size', type=int, default=8, help='The size of batch size')
parser.add_argument('--save_freq', type=int, default=1, help='The number of ckpt_save_freq')
parser.add_argument('--load_or_resume', type=str.lower, default="load", choices=["load", "resume"], help='load is used for fine-tuning and resume is used to continue training.')
parser.add_argument('--init_G_lr', type=float, default=2e-4, help='The generator learning rate')
parser.add_argument('--g_lr', type=float, default=1e-4, help='The learning rate')
parser.add_argument('--d_lr', type=float, default=1e-4, help='The learning rate')
# ---------------------------------------------
parser.add_argument('--img_size', type=int, nargs='+', default=[256,256], help='The size of image: H and W')
parser.add_argument('--img_ch', type=int, default=3, help='The size of image channel')
parser.add_argument('--sn', type=str2bool, default=True, help='using spectral norm')
parser.add_argument('--checkpoint_dir', type=str, default='checkpoint',
help='Directory name to save the checkpoints')
parser.add_argument('--log_dir', type=str, default='logs',
help='Directory name to save training logs')
parser.add_argument('--sample_dir', type=str, default='samples',
help='Directory name to save the samples on training')
return check_args(parser.parse_args())
"""checking arguments"""
def check_args(args):
# --checkpoint_dir
check_folder(args.checkpoint_dir)
# --log_dir
check_folder(args.log_dir)
# --sample_dir
check_folder(args.sample_dir)
# --epoch
try:
assert args.epoch >= 1
except:
print('number of epochs must be larger than or equal to one')
# --batch_size
try:
assert args.batch_size >= 1
except:
print('batch size must be larger than or equal to one')
return args
"""train"""
def train():
# parse arguments
args = parse_args()
if args is None:
exit()
if len(args.img_size) ==1:
args.img_size = [args.img_size, args.img_size]
# open session
gpu_options = tf.GPUOptions(allow_growth=True)
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True,inter_op_parallelism_threads=8,
intra_op_parallelism_threads=8,gpu_options=gpu_options)) as sess:
# with tf.Session() as sess:
gan = AnimeGANv3(sess, args)
# build graph
gan.build_train()
# show network architecture
show_all_variables()
# start train
gan.train()
print("----- Training finished! -----")
if __name__ == '__main__':
start_time = time.time()
train()
print("start time :", time.strftime("%Y %b %d %H:%M:%S %a",time.localtime(start_time)))
print("end time :", time.strftime("%Y %b %d %H:%M:%S %a",time.localtime(time.time())))