forked from All-Hands-AI/OpenHands
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_infer.py
302 lines (258 loc) Β· 9.66 KB
/
run_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import asyncio
import functools
import os
from typing import Any
import pandas as pd
from datasets import load_dataset
from evaluation.benchmarks.mint.datatypes import TaskState
from evaluation.benchmarks.mint.env import SimplifiedEnv
from evaluation.benchmarks.mint.prompts import ToolPromptTemplate
from evaluation.benchmarks.mint.tasks import Task
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
compatibility_for_eval_history_pairs,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import (
Action,
CmdRunAction,
MessageAction,
)
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
def codeact_user_response_mint(state: State, task: Task, task_config: dict[str, int]):
logger.info(f'Gold reference: {task.reference}')
logger.info(f'Task config: {task_config}')
env = SimplifiedEnv(
agent_state=state,
task=task,
task_config=task_config,
)
last_action = next(
(event for event in reversed(state.history) if isinstance(event, Action)),
None,
)
result_state: TaskState = env.step(last_action.message or '')
state.extra_data['task_state'] = result_state
if not result_state.latest_output:
# Task is finished
msg = '/exit'
else:
msg = result_state.latest_output['content']
logger.info('User response:' + msg)
return msg
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response_mint,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'IMPORTANT: When your answer is confirmed by the user to be correct, you can use the "finish" tool to finish the interaction.\n'
}
with open(os.path.join(os.path.dirname(__file__), 'requirements.txt'), 'r') as f:
MINT_DEPENDENCIES = f.read().splitlines()
def load_incontext_example(task_name: str, with_tool: bool = True):
assert with_tool, 'NOT with_tool is not supported yet'
subset = {
'gsm8k': 'reasoning',
'math': 'reasoning',
'mmlu': 'reasoning',
'theoremqa': 'reasoning',
'mbpp': 'mbpp',
'humaneval': 'humaneval',
}[task_name]
with open(
os.path.join(
os.path.dirname(__file__),
'tasks',
'in_context_examples',
subset,
'with_tool.txt',
),
'r',
) as f:
return f.read()
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='docker',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image='xingyaoww/od-eval-mint:v1.0',
enable_auto_lint=True,
use_host_network=False,
runtime_extra_deps=f'$OH_INTERPRETER_PATH -m pip install {" ".join(MINT_DEPENDENCIES)}',
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
agent_config = config.get_agent_config(metadata.agent_class)
agent_config.use_microagents = False
return config
def initialize_runtime(runtime: Runtime):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
obs: CmdOutputObservation
# Set instance id
action = CmdRunAction(command='mkdir -p /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
action = CmdRunAction(command='cd /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
def process_instance(
instance: Any,
metadata: EvalMetadata,
reset_logger: bool = True,
):
config = get_config(metadata)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
# Prepare instruction
assert metadata.details is not None
instruction = ToolPromptTemplate(use_tool=True)(
max_total_steps=metadata.max_iterations,
max_propose_solution=metadata.details['max_propose_solution'],
in_context_example=instance.in_context_example,
task_prompt='Task:\n' + instance.prompt,
)
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you or provide the concise RESULT inside <solution> tag AND NEVER ASK FOR HUMAN HELP.\n'
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
# Here's how you can run the agent (similar to the `main` function) and get the final task state
fake_user_response_fn = functools.partial(
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[metadata.agent_class],
task=instance,
task_config={
'max_iterations': metadata.max_iterations,
'max_propose_solution': metadata.details['max_propose_solution'],
},
)
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
initialize_runtime(runtime)
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=fake_user_response_fn,
)
)
if state is None:
raise ValueError('State should not be None.')
task_state = None
if 'task_state' in state.extra_data:
task_state = state.extra_data['task_state']
logger.info('Task state: ' + str(task_state.to_dict()))
metrics = state.metrics.get() if state.metrics else None
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = compatibility_for_eval_history_pairs(state.history)
# Save the output
output = EvalOutput(
instance_id=instance.instance_id,
instance=instance.to_dict(),
instruction=instruction,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result={
'success': task_state.success if task_state else False,
},
)
return output
if __name__ == '__main__':
parser = get_parser()
SUBSETS = [
# Eurus subset: https://arxiv.org/abs/2404.02078
'math',
# 'gsm8k',
'mmlu',
'theoremqa',
'mbpp',
'humaneval',
]
parser.add_argument(
'--subset',
default='all',
choices=SUBSETS + ['all'],
type=str,
help='subset of the dataset to be used',
)
parser.add_argument(
'--max-propose-solution',
default=2,
type=int,
help='maximum number of times the agent can propose a solution',
)
args, _ = parser.parse_known_args()
# NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
# so we don't need to manage file uploading to OpenHands's repo
if args.subset == 'all':
subsets = SUBSETS
else:
subsets = [args.subset]
dataset_dfs = []
for subset in subsets:
in_context_example = load_incontext_example(subset)
_cur_dataset = load_dataset(
'ryanhoangt/xingyaoww-mint-bench', name=subset, split='test'
)
logger.info(f'Loaded MINT - {subset} subset')
_df = _cur_dataset.to_pandas().rename(columns={'id': 'instance_id'})
_df['instance_id'] = _df['instance_id'].apply(lambda x: f'{subset}/{x}') # noqa
_df['in_context_example'] = in_context_example
dataset_dfs.append(_df)
logger.info(f'Loaded {len(_df)} instances for subset: {subset}')
dataset_df = pd.concat(dataset_dfs)
logger.info(f'Loaded {len(dataset_df)} instances for subset: {subsets}')
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
metadata = make_metadata(
llm_config,
f'MINT-{args.subset}',
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
details={'max_propose_solution': args.max_propose_solution},
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(dataset_df, output_file, args.eval_n_limit)
run_evaluation(
instances, metadata, output_file, args.eval_num_workers, process_instance
)