-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun_c3.py
1030 lines (864 loc) · 41.6 KB
/
run_c3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import csv
import json
import logging
import os
import pickle
import random
from shutil import copyfile
import consts
import numpy as np
from tqdm import tqdm
import torch
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from file_utils import PYTORCH_PRETRAINED_BERT_CACHE
import modeling
from optimization import BertAdam, warmup_linear, get_optimizer
from schedulers import LinearWarmUpScheduler
from utils import mkdir, is_main_process, get_freer_gpu, load_tokenizer
# from google_albert_pytorch_modeling import AlbertConfig, AlbertForMultipleChoice
# from pytorch_modeling import BertConfig, BertForMultipleChoice, ALBertConfig, ALBertForMultipleChoice
from mrc.tools import official_tokenization as tokenization
from mrc.tools import utils
from run_pretraining import pretraining_dataset, WorkerInitObj
# from tools.pytorch_optimization import get_optimization, warmup_linear
# Contants for C3
NUM_CHOICES = 4 # 数据集里不一定有四个选项,但是会手动加 “无效答案” 至4个
REVERSE_ORDER = False
SA_STEP = False
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None, text_c=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.text_c = text_c
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
class c3Processor(DataProcessor):
def __init__(self, data_dir, do_train=False, do_eval=False, do_test=False):
self.D = [[], [], []]
self.data_dir = data_dir
for sid in range(3):
# for sid in range(2):
# Skip files that are not going to use
if not do_train:
if sid == 0:
continue
if not do_eval:
if sid == 1:
continue
if not do_test:
if sid == 2:
continue
data = []
for subtask in ["d", "m"]:
files = ["train.json", "dev.json", "test.json"]
# files = ['train.json', 'dev.json']
filename = self.data_dir + "/" + subtask + "-" + files[sid]
with open(filename, "r", encoding="utf8") as f:
data += json.load(f)
logger.info('Loaded {} examples from "{}"'.format(len(data), filename))
if sid == 0:
random.shuffle(data)
for i in range(len(data)):
for j in range(len(data[i][1])):
d = ['\n'.join(data[i][0]).lower(), data[i][1][j]["question"].lower()]
for k in range(len(data[i][1][j]["choice"])):
d += [data[i][1][j]["choice"][k].lower()]
for k in range(len(data[i][1][j]["choice"]), 4):
d += ['无效答案'] # 有些C3数据选项不足4个,添加[无效答案]能够有效增强模型收敛稳定性
d += [data[i][1][j]["answer"].lower()]
self.D[sid] += [d]
def get_train_examples(self):
"""See base class."""
return self._create_examples(self.D[0], "train")
def get_test_examples(self):
"""See base class."""
return self._create_examples(self.D[2], "test")
def get_dev_examples(self):
"""See base class."""
return self._create_examples(self.D[1], "dev")
def get_labels(self):
"""See base class."""
return ["0", "1", "2", "3"]
def _create_examples(self, data, set_type):
"""Creates examples for the training and dev sets."""
cache_dir = os.path.join(self.data_dir, set_type + '_examples.pkl')
# if os.path.exists(cache_dir):
if False:
examples = pickle.load(open(cache_dir, 'rb'))
else:
examples = []
for (i, d) in enumerate(data):
answer = -1
# 这里data[i]有6个元素,0是context,1是问题,2~5是choice,6是答案
for k in range(4):
if data[i][2 + k] == data[i][6]:
answer = str(k)
label = tokenization.convert_to_unicode(answer)
for k in range(4):
guid = "%s-%s-%s" % (set_type, i, k)
text_a = tokenization.convert_to_unicode(data[i][0])
text_b = tokenization.convert_to_unicode(data[i][k + 2])
text_c = tokenization.convert_to_unicode(data[i][1])
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label, text_c=text_c))
with open(cache_dir, 'wb') as w:
pickle.dump(examples, w)
return examples
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer):
"""Loads a data file into a list of `InputBatch`s."""
# print("#examples", len(examples))
label_map = {}
for (i, label) in enumerate(label_list):
label_map[label] = i
features = [[]]
for (ex_index, example) in enumerate(tqdm(examples)):
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = tokenizer.tokenize(example.text_b)
tokens_c = tokenizer.tokenize(example.text_c)
_truncate_seq_tuple(tokens_a, tokens_b, tokens_c, max_seq_length - 4)
tokens_b = tokens_c + ["[SEP]"] + tokens_b
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
label_id = label_map[example.label]
if ex_index < 1:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
# logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
# logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
# logger.info(
# "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
# logger.info("label: %s (id = %d)" % (example.label, label_id))
features[-1].append(
InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id))
if len(features[-1]) == NUM_CHOICES:
features.append([])
if len(features[-1]) == 0:
features = features[:-1]
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def _truncate_seq_tuple(tokens_a, tokens_b, tokens_c, max_length):
"""Truncates a sequence tuple in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b) + len(tokens_c)
if total_length <= max_length:
break
if len(tokens_a) >= len(tokens_b) and len(tokens_a) >= len(tokens_c):
tokens_a.pop()
elif len(tokens_b) >= len(tokens_a) and len(tokens_b) >= len(tokens_c):
tokens_b.pop()
else:
tokens_c.pop()
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
def parse_args():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument('--data_dir', type=str, required=True)
parser.add_argument('--output_dir', type=str, required=True)
parser.add_argument('--tokenizer_type', type=str, required=True)
parser.add_argument('--vocab_file', type=str, required=True)
parser.add_argument('--vocab_model_file', type=str, required=True)
parser.add_argument('--cws_vocab_file', type=str, default='')
parser.add_argument('--config_file', type=str, required=True)
parser.add_argument('--init_checkpoint', type=str, required=True)
## Other parameters
parser.add_argument("--do_lower_case",
default=True,
action='store_true',
help="Whether to lower case the input text. True for uncased models, False for cased models.")
parser.add_argument("--max_seq_length",
default=512,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
default=False,
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
default=False,
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument('--do_test',
default=False,
action='store_true',
help='Whether to test model on test set (will load model from "best_model.bin")')
parser.add_argument("--train_batch_size",
default=16,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=16,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate",
default=2e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--schedule",
default='warmup_linear',
type=str,
help='schedule')
parser.add_argument("--weight_decay_rate",
default=0.01,
type=float,
help='weight_decay_rate')
parser.add_argument('--clip_norm',
type=float,
default=1.0)
parser.add_argument("--num_train_epochs",
default=8.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
default=False,
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--float16',
action='store_true',
default=False)
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed', type=int, required=True)
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumualte before performing a backward/update pass.")
parser.add_argument('--test_model', type=str, default=None)
# parser.add_argument('--setting_file', type=str, default='setting.txt')
return parser.parse_args()
def get_features(
examples,
data_type,
data_dir,
max_seq_length,
tokenizer,
tokenizer_type,
vocab_size,
label_list):
if data_type == 'eval':
data_type = 'dev'
if data_type not in ['train', 'dev', 'test']:
raise ValueError('Expected "train", "dev" or "test", but got', data_type)
file_feature = '{}_features_{}_{}_{}.pkl'.format(data_type, max_seq_length, tokenizer_type, vocab_size)
file_feature = os.path.join(data_dir, file_feature)
if data_type != 'test' and os.path.exists(file_feature):
# if False:
logger.info('Loading features from \"' + file_feature + '\"...')
features = pickle.load(open(file_feature, 'rb'))
logger.info('Loaded {} features.'.format(len(features)))
else:
logger.info('Converting {} examples into features...'.format(len(examples)))
features = convert_examples_to_features(examples, label_list, max_seq_length, tokenizer)
with open(file_feature, 'wb') as w:
pickle.dump(features, w)
logger.info('Saved {} features to "{}".'.format(len(features), file_feature))
return features
def get_device(args):
if torch.cuda.is_available():
return torch.device('cuda') # Only one gpu
free_gpu = get_freer_gpu()
return torch.device('cuda', free_gpu)
else:
return torch.device('cpu')
def train(args):
# Output files
output_dir = os.path.join(args.output_dir, str(args.seed))
os.makedirs(output_dir, exist_ok=True)
filename_scores = os.path.join(output_dir, 'scores.txt')
filename_params = os.path.join(output_dir, 'params.json')
logger.info(json.dumps(vars(args), indent=4))
json.dump(vars(args), open(filename_params, 'w'), indent=4)
with open(filename_scores, 'w') as f:
f.write('\t'.join(['epoch', 'train_loss', 'dev_loss', 'dev_acc']) + '\n')
device = get_device(args)
n_gpu = torch.cuda.device_count()
logger.info('Device: ' + str(device))
logger.info('Num gpus: ' + str(n_gpu))
# logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
# Processor
logger.info('Loading processor...')
processor = c3Processor(args.data_dir, do_train=True, do_eval=True)
label_list = processor.get_labels()
# Tokenizer
logger.info('Loading tokenizer...')
logger.info('vocab file={}, vocab_model_file={}'.format(args.vocab_file, args.vocab_model_file))
# tokenizer = ALL_TOKENIZERS[args.tokenizer_type](args.vocab_file, args.vocab_model_file)
tokenizer = load_tokenizer(args)
real_tokenizer_type = args.output_dir.split(os.path.sep)[-2]
# Load training data
logger.info('Loading training data...')
train_examples = None
num_train_steps = None
if args.do_train:
train_examples = processor.get_train_examples()
num_train_steps = int(len(train_examples) / NUM_CHOICES / args.train_batch_size /
args.gradient_accumulation_steps * args.num_train_epochs)
# Prepare Model
logger.info('Loading model from checkpoint "{}"...'.format(args.init_checkpoint))
config = modeling.BertConfig.from_json_file(args.config_file)
# Padding for divisibility by 8
if config.vocab_size % 8 != 0:
config.vocab_size += 8 - (config.vocab_size % 8)
modeling.ACT2FN["bias_gelu"] = modeling.bias_gelu_training
model = modeling.BertForMultipleChoice(config, NUM_CHOICES)
state_dict = torch.load(args.init_checkpoint, map_location='cpu')['model']
model.load_state_dict(state_dict, strict=False)
model.to(device)
if args.max_seq_length > config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length {} because the BERT model was only trained up to sequence length {}".format(
args.max_seq_length, config.max_position_embeddings))
if args.float16:
model.half()
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[args.local_rank],
output_device=args.local_rank)
elif n_gpu > 1:
# model = torch.nn.DataParallel(model)
pass
logger.info('Saving config file...')
model_to_save = model.module if hasattr(model, 'module') else model
filename_config = os.path.join(output_dir, modeling.FILENAME_CONFIG)
with open(filename_config, 'w') as f:
f.write(model_to_save.config.to_json_string())
# Optimizer
optimizer = get_optimizer(
model=model,
float16=args.float16,
learning_rate=args.learning_rate,
total_steps=num_train_steps,
schedule=args.schedule,
warmup_rate=args.warmup_proportion,
max_grad_norm=args.clip_norm,
weight_decay_rate=args.weight_decay_rate,
opt_pooler=True) # multi_choice must update pooler
global_step = 0
# Load eval data
eval_dataloader = None
if args.do_eval:
logger.info('Loading eval data...')
eval_examples = processor.get_dev_examples()
eval_features = get_features(
eval_examples,
'eval',
args.data_dir,
args.max_seq_length,
tokenizer,
real_tokenizer_type,
config.vocab_size,
label_list)
# feature_file = f'dev_features_{args.max_seq_length}_{args.tokenizer_type}.pkl'
# feature_dir = os.path.join(args.data_dir, feature_file)
# logger.info('Loading (or generating) eval features...')
# if os.path.exists(feature_dir):
# logger.info(f'Loading features from "{feature_dir}"...')
# eval_features = pickle.load(open(feature_dir, 'rb'))
# logger.info(f'Loaded {len(eval_features)} features.')
# else:
# logger.info(f'Converting {len(eval_examples)} examples to features')
# eval_features = convert_examples_to_features(eval_examples, label_list, args.max_seq_length, tokenizer)
# with open(feature_dir, 'wb') as w:
# pickle.dump(eval_features, w)
# logger.info(f'Saved {len(eval_examples)} features to "{feature_dir}".')
# TODO: remove (for debugging only)
# eval_features = eval_features[:100]
input_ids = []
input_mask = []
segment_ids = []
label_id = []
for f in eval_features:
input_ids.append([])
input_mask.append([])
segment_ids.append([])
for i in range(NUM_CHOICES):
input_ids[-1].append(f[i].input_ids)
input_mask[-1].append(f[i].input_mask)
segment_ids[-1].append(f[i].segment_ids)
label_id.append(f[0].label_id)
all_input_ids = torch.tensor(input_ids, dtype=torch.long)
all_input_mask = torch.tensor(input_mask, dtype=torch.long)
all_segment_ids = torch.tensor(segment_ids, dtype=torch.long)
all_label_ids = torch.tensor(label_id, dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
if args.local_rank == -1:
eval_sampler = SequentialSampler(eval_data)
else:
eval_sampler = DistributedSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
if args.do_train:
best_accuracy = 0
# feature_dir = os.path.join(args.data_dir, 'train_features{}.pkl'.format(args.max_seq_length))
# if os.path.exists(feature_dir):
# # if False:
# logger.info(f'Loading train features from "{feature_dir}"...')
# train_features = pickle.load(open(feature_dir, 'rb'))
# logger.info(f'Loading {len(train_features)} train features.')
# else:
# logger.info(f'Converting {len(train_examples)} into features...')
# train_features = convert_examples_to_features(train_examples, label_list, args.max_seq_length, tokenizer)
# with open(feature_dir, 'wb') as w:
# pickle.dump(train_features, w)
# logger.info(f'Saved {len(train_features)} features to "{feature_dir}".')
train_features = get_features(
train_examples,
'train',
args.data_dir,
args.max_seq_length,
tokenizer,
real_tokenizer_type,
config.vocab_size,
label_list)
# TODO: remove (for debugging only)
# train_features = train_features[:600]
logger.info("***** Running training *****")
logger.info(' Num epochs = %d', args.num_train_epochs)
logger.info(" Num examples = %d", len(train_examples))
logger.info(' Num features = %d', len(train_features))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_steps)
# Process features
input_ids = []
input_mask = []
segment_ids = []
label_id = []
for f in train_features:
input_ids.append([])
input_mask.append([])
segment_ids.append([])
for i in range(NUM_CHOICES):
input_ids[-1].append(f[i].input_ids)
input_mask[-1].append(f[i].input_mask)
segment_ids[-1].append(f[i].segment_ids)
label_id.append(f[0].label_id)
all_input_ids = torch.tensor(input_ids, dtype=torch.long)
all_input_mask = torch.tensor(input_mask, dtype=torch.long)
all_segment_ids = torch.tensor(segment_ids, dtype=torch.long)
all_label_ids = torch.tensor(label_id, dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size,
drop_last=True)
steps_per_epoch = int(num_train_steps / args.num_train_epochs)
train_loss_history = []
eval_loss_history = []
eval_acc_history = []
for ep in range(int(args.num_train_epochs)):
model.train()
total_train_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
with tqdm(total=int(steps_per_epoch), desc='Epoch %d' % (ep + 1)) as pbar:
for step, batch in enumerate(train_dataloader):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
loss = model(input_ids, segment_ids, input_mask, label_ids)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
total_train_loss += loss.item()
if args.float16:
optimizer.backward(loss)
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used and handles this automatically
lr_this_step = args.learning_rate * warmup_linear(global_step / num_train_steps,
args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
else:
loss.backward()
nb_tr_examples += input_ids.size(0)
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step() # We have accumulated enought gradients
model.zero_grad()
global_step += 1
nb_tr_steps += 1
pbar.set_postfix({'loss': '{0:1.5f}'.format(total_train_loss / (nb_tr_steps + 1e-5))})
pbar.update(1)
# Evaluation
if args.do_eval:
logger.info("***** Running Evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(' Num features = %d', len(eval_features))
logger.info(" Batch size = %d", args.eval_batch_size)
model.eval()
eval_loss, eval_acc = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
logits_all = []
for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
tmp_eval_loss, logits = model(input_ids, segment_ids, input_mask, label_ids, return_logits=True)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.cpu().numpy()
for i in range(len(logits)):
logits_all += [logits[i]]
tmp_eval_acc = accuracy(logits, label_ids.reshape(-1))
eval_loss += tmp_eval_loss.mean().item()
eval_acc += tmp_eval_acc
nb_eval_examples += input_ids.size(0)
nb_eval_steps += 1
# Average
eval_loss = eval_loss / (nb_eval_steps + 1e-5)
eval_acc = eval_acc / (nb_eval_examples + 1e-5)
train_loss = total_train_loss / (nb_tr_steps + 1e-5)
eval_acc_history.append(eval_acc)
eval_loss_history.append(eval_loss)
train_loss_history.append(train_loss)
if args.do_train:
result = {'eval_loss': eval_loss,
'eval_acc': eval_acc,
'global_step': global_step,
'train_loss': train_loss}
else:
result = {'eval_loss': eval_loss,
'eval_acc': eval_acc}
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
logger.info(' Epoch = {}'.format(ep))
# Save result of this epoch
with open(filename_scores, 'a') as f:
f.write("{}\t{}\t{}\t{}\n".format(ep, train_loss, eval_loss, eval_acc))
# with open(args.log_file, 'a') as aw:
# aw.write("-------------------global steps:{}-------------------\n".format(global_step))
# aw.write(str(json.dumps(result, indent=2)) + '\n')
# if eval_acc >= best_accuracy:
# torch.save(model.state_dict(), os.path.join(args.output_dir, "model_best.pt"))
# best_accuracy = eval_acc
# Save model
if is_main_process():
model_to_save = model.module if hasattr(model, 'module') else model
dir_model = os.path.join(output_dir, 'models')
os.makedirs(dir_model, exist_ok=True)
filename_model = os.path.join(dir_model, 'model_epoch_' + str(ep) + '.bin')
# filename_model = os.path.join(output_dir, 'model_epoch_' + str(ep) + '.bin')
torch.save(
{"model": model_to_save.state_dict()},
filename_model,
)
if args.do_eval:
if len(eval_acc_history) == 0 or eval_acc_history[-1] == max(eval_acc_history):
filename_best_model = os.path.join(output_dir, modeling.FILENAME_BEST_MODEL)
copyfile(filename_model, filename_best_model)
logger.info('New best model saved')
# model.load_state_dict(torch.load(os.path.join(args.output_dir, "model_best.pt")))
# torch.save(model.state_dict(), os.path.join(args.output_dir, "model.pt"))
print('Training finished')
def test(args):
# Output files
output_dir = os.path.join(args.output_dir, str(args.seed))
os.makedirs(output_dir, exist_ok=True)
# filename_scores = os.path.join(output_dir, 'scores.txt')
# filename_params = os.path.join(output_dir, 'params.json')
logger.info(json.dumps(vars(args), indent=4))
# json.dump(vars(args), open(filename_params, 'w'), indent=4)
# with open(filename_scores, 'w') as f:
# Setup cuda
# if args.local_rank == -1 or args.no_cuda:
# device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
# n_gpu = torch.cuda.device_count()
# else:
# device = torch.device("cuda", args.local_rank)
# n_gpu = 1
# # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
# torch.distributed.init_process_group(backend='nccl')
# logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))
device = get_device(args)
n_gpu = torch.cuda.device_count()
logger.info('Device: ' + str(device))
logger.info('Num gpus: ' + str(n_gpu))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
batch_size = args.eval_batch_size
# Tokenizer and processor
logger.info('Loading processor...')
processor = c3Processor(args.data_dir, do_test=True)
label_list = processor.get_labels()
logger.info('Loading tokenizer...')
# tokenizer = ALL_TOKENIZERS[args.tokenizer_type](args.vocab_file, args.vocab_model_file)
tokenizer = load_tokenizer(args)
# Load test data
logger.info('Loading test data...')
test_examples = processor.get_test_examples()
num_examples = len(test_examples)
num_steps = int(num_examples / NUM_CHOICES / batch_size)
# Load model
# filename_best_model = os.path.join(output_dir, modeling.WEIGHTS_NAME + '_best')
if args.test_model is not None and len(args.test_model) > 0:
filename_best_model = args.test_model
else:
filename_best_model = os.path.join(output_dir, modeling.FILENAME_BEST_MODEL)
if args.config_file is not None and len(args.config_file) > 0:
filename_config = args.config_file
else:
filename_config = os.path.join(output_dir, modeling.FILENAME_CONFIG)
logger.info('Loading model from "{}"...'.format(filename_best_model))
config = modeling.BertConfig.from_json_file(filename_config)
# Padding for divisibility by 8
if config.vocab_size % 8 != 0:
config.vocab_size += 8 - (config.vocab_size % 8)
modeling.ACT2FN["bias_gelu"] = modeling.bias_gelu_training
model = modeling.BertForMultipleChoice(config, NUM_CHOICES)
state_dict = torch.load(filename_best_model, map_location='cpu')['model']
model.load_state_dict(state_dict, strict=False)
# for i in range(len(logits_all)):
# for j in range(len(logits_all[i])):
# f.write(str(logits_all[i][j]))
# if j == len(logits_all[i]) - 1:
# f.write("\n")
# else:
# f.write(" ")
if args.max_seq_length > config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length {} because the BERT model was only trained up to sequence length {}".format(
args.max_seq_length, config.max_position_embeddings))
if args.float16:
model.half()
model.to(device)
real_tokenizer_type = args.output_dir.split(os.path.sep)[-2]
logger.info('Loading test data...')
test_examples = processor.get_test_examples()
test_features = get_features(
test_examples,
'test',
args.data_dir,
args.max_seq_length,
tokenizer,
real_tokenizer_type,
config.vocab_size,
label_list)
# feature_file = f'test_features_{args.max_seq_length}_{args.tokenizer_type}.pkl'
# feature_dir = os.path.join(args.data_dir, feature_file)
# if os.path.exists(feature_dir):
# test_features = pickle.load(open(feature_dir, 'rb'))
# else:
# test_features = convert_examples_to_features(test_examples, label_list, args.max_seq_length, tokenizer)
# with open(feature_dir, 'wb') as w:
# pickle.dump(test_features, w)
# TODO: remove (for debugging only)
# test_features = test_features[:100]
logger.info("***** Running testing *****")
logger.info(' Num examples = {}'.format(len(test_examples)))
logger.info(' Num features = {}'.format(len(test_features)))
logger.info(' Batch size = {}'.format(args.eval_batch_size))
input_ids = []
input_mask = []
segment_ids = []
label_id = []
for f in test_features:
input_ids.append([])
input_mask.append([])
segment_ids.append([])
for i in range(NUM_CHOICES):
input_ids[-1].append(f[i].input_ids)
input_mask[-1].append(f[i].input_mask)
segment_ids[-1].append(f[i].segment_ids)
label_id.append(f[0].label_id)
all_input_ids = torch.tensor(input_ids, dtype=torch.long)
all_input_mask = torch.tensor(input_mask, dtype=torch.long)
all_segment_ids = torch.tensor(segment_ids, dtype=torch.long)
all_label_ids = torch.tensor(label_id, dtype=torch.long)
test_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
if args.local_rank == -1:
test_sampler = SequentialSampler(test_data)
else:
test_sampler = DistributedSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.eval_batch_size)
model.eval()
test_loss, test_accuracy = 0, 0
nb_test_steps, nb_test_examples = 0, 0
logits_all = []
for input_ids, input_mask, segment_ids, label_ids in tqdm(test_dataloader):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
tmp_test_loss, logits = model(input_ids, segment_ids, input_mask, label_ids, return_logits=True)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
for i in range(len(logits)):
logits_all += [logits[i]]
tmp_test_accuracy = accuracy(logits, label_ids.reshape(-1))
test_loss += tmp_test_loss.mean().item()
test_accuracy += tmp_test_accuracy
nb_test_examples += input_ids.size(0)
nb_test_steps += 1
test_loss = test_loss / (nb_test_steps + 1e-5)
test_accuracy = test_accuracy / (nb_test_examples + 1e-5)
result = {
'test_loss': test_loss,
'test_accuracy': test_accuracy}
output_test_file = os.path.join(output_dir, consts.FILENAME_TEST_RESULT)
with open(output_test_file, "w") as writer:
logger.info("***** Test results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
output_test_file = os.path.join(output_dir, "logits_test.txt")
logger.info('saving to logits_test.txt')
with open(output_test_file, "w") as f:
for i in range(len(logits_all)):
for j in range(len(logits_all[i])):
f.write(str(logits_all[i][j]))
if j == len(logits_all[i]) - 1:
f.write("\n")
else:
f.write(" ")
logger.info('Saving predictions to submission_test.json')
# the test submission order can't be changed