-
Notifications
You must be signed in to change notification settings - Fork 435
/
Copy path02-making-rigorous-conclusions.qmd
390 lines (287 loc) · 10.4 KB
/
02-making-rigorous-conclusions.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
---
title: "Making rigorous conclusions"
---
In this part we introduce modelling and statistical inference for making data-based conclusions.
We discuss building, interpreting, and selecting models, visualizing interaction effects, and prediction and model validation.
Statistical inference is introduced from a simulation based perspective, and the Central Limit Theorem is discussed very briefly to lay the foundation for future coursework in statistics.
::: rstudio-cloud
The RStudio Cloud workspace for Data Science Course in a Box project is [here](https://rstudio.cloud/spaces/1655/join?access_code=5rdjusfIYF5iI0Gum2vNsBDLdtdnIEELBkf2EivK).
You can join the workspace and play around with the sample application exercises.
:::
## Slides, videos, and application exercises
### Modelling data
::: slide-deck
**Unit 4 - Deck 1: The language of models**
::: slides
[Slides](https://datasciencebox.org/course-materials/_slides/u4-d01-language-of-models/u4-d01-language-of-models.html#1)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/main/course-materials/_slides/u4-d01-language-of-models)
:::
::: video
[Video](https://youtu.be/MWkkvDopBKc)
:::
:::
::: slide-deck
**Unit 4 - Deck 2: Fitting and interpreting models**
::: slides
[Slides](https://datasciencebox.org/course-materials/_slides/u4-d02-fitting-interpreting-models/u4-d02-fitting-interpreting-models.html#1)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/main/course-materials/_slides/u4-d02-fitting-interpreting-models)
:::
::: video
[Video](https://youtu.be/69U92Q3pwnA)
:::
::: reading
IMS :: [Chp 7 - Linear regression with a single predictor](https://openintro-ims.netlify.app/model-slr.html)
:::
:::
::: slide-deck
**Unit 4 - Deck 3: Modelling nonlinear relationships**
::: slides
[Slides](https://datasciencebox.org/course-materials/_slides/u4-d03-modeling-nonlinear-relationships/u4-d03-modeling-nonlinear-relationships.html#1)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/main/course-materials/_slides/u4-d03-modeling-nonlinear-relationships)
:::
::: video
[Video](https://youtu.be/j4MZ6ZdHnHg)
:::
:::
::: slide-deck
**Unit 4 - Deck 4: Models with multiple predictors**
::: slides
[Slides](https://datasciencebox.org/course-materials/_slides/u4-d04-model-multiple-predictors/u4-d04-model-multiple-predictors.html#1)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/main/course-materials/_slides/u4-d04-model-multiple-predictors)
:::
::: video
[Video](https://youtu.be/mjkNabD4oi4)
:::
::: reading
IMS :: [Chp 8 - Linear regression with multiple predictors](https://openintro-ims.netlify.app/model-mlr.html)
:::
:::
::: slide-deck
**Unit 4 - Deck 5: More models with multiple predictors**
::: slides
[Slides](https://datasciencebox.org/course-materials/_slides/u4-d05-more-model-multiple-predictors/u4-d05-more-model-multiple-predictors.html#1)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/main/course-materials/_slides/u4-d05-more-model-multiple-predictors)
:::
::: video
[Video](https://youtu.be/nJAYRnLPb10)
:::
:::
### Classification and model building
::: slide-deck
**Unit 4 - Deck 6: Logistic regression**
::: slides
[Slides](https://datasciencebox.org/course-materials/_slides/u4-d06-logistic-reg/u4-d06-logistic-reg.html#1)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/main/course-materials/_slides/u4-d06-logistic-reg)
:::
::: video
[Video](https://youtu.be/AidXFYSYfJg)
:::
::: reading
IMS :: [Chp 9 - Logistic regression](https://openintro-ims.netlify.app/model-logistic.html)
:::
:::
::: slide-deck
**Unit 4 - Deck 7: Prediction and overfitting**
::: slides
[Slides](https://datasciencebox.org/course-materials/_slides/u4-d07-prediction-overfitting/u4-d07-prediction-overfitting.html#1)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/main/course-materials/_slides/u4-d07-prediction-overfitting)
:::
::: video
[Video](https://youtu.be/Qd4lu_Lmwi0)
:::
::: reading
tidymodels :: [Build a model](https://www.tidymodels.org/start/models/)
:::
:::
::: slide-deck
**Unit 4 - Deck 8: Feature engineering**
::: slides
[Slides](https://datasciencebox.org/course-materials/_slides/u4-d08-feature-engineering/u4-d08-feature-engineering.html#1)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/main/course-materials/_slides/u4-d08-feature-engineering)
:::
::: video
[Video](https://youtu.be/wZt9ab4jBZ4)
:::
::: reading
tidymodels :: [Preprocess your data with recipes](https://www.tidymodels.org/start/recipes/)
:::
:::
### Model validation
::: slide-deck
**Unit 4 - Deck 9: Cross validation**
::: slides
[Slides](https://datasciencebox.org/course-materials/_slides/u4-d09-cross-validation/u4-d09-cross-validation.html#1)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/main/course-materials/_slides/u4-d09-cross-validation)
:::
::: video
[Video](https://youtu.be/L1KfIISmUT4)
:::
::: reading
tidymodels :: [Evaluate your model with resampling](https://www.tidymodels.org/start/resampling/)
:::
:::
::: application-exercise
**The Office + Feature engineering, Pt. 1**
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/application-exercises/ae-09-feat-eng-cv/theoffice.qmd)
:::
::: video
[Video](https://youtu.be/qsUYstdN4LQ)
:::
:::
::: application-exercise
**The Office + Cross validation, Pt. 2**
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/application-exercises/ae-09-feat-eng-cv/theoffice.qmd)
:::
::: video
[Video](https://youtu.be/WstIr94Fdjc)
:::
:::
### Uncertainty quantification
::: slide-deck
**Unit 4 - Deck 10: Quantifying uncertainty**
::: slides
[Slides](https://datasciencebox.org/course-materials/_slides/u4-d10-quantify-uncertainty/u4-d10-quantify-uncertainty.html#1)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/main/course-materials/_slides/u4-d10-quantify-uncertainty)
:::
::: video
[Video](https://youtu.be/LYpKrtZmQtI)
:::
:::
::: slide-deck
**Unit 4 - Deck 11: Bootstrapping**
::: slides
[Slides](https://datasciencebox.org/course-materials/_slides/u4-d11-bootstrap/u4-d11-bootstrap.html#1)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/main/course-materials/_slides/u4-d11-bootstrap)
:::
::: video
[Video](https://youtu.be/bdqpI3iVOso)
:::
::: reading
IMS :: [Chp 12 - Confidence intervals with bootstrapping](https://openintro-ims.netlify.app/foundations-bootstrapping.html)
:::
:::
::: slide-deck
**Unit 4 - Deck 12: Hypothesis testing**
::: slides
[Slides](https://datasciencebox.org/course-materials/_slides/u4-d12-hypothesis-testing/u4-d12-hypothesis-testing.html#1)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/main/course-materials/_slides/u4-d12-hypothesis-testing)
:::
::: reading
[IMS :: Chp 11 - Hypothesis testing with randomization](https://openintro-ims.netlify.app/foundations-randomization.html)
:::
:::
::: slide-deck
**Unit 4 - Deck 13: Inference overview**
::: slides
[Slides](https://datasciencebox.org/course-materials/_slides/u4-d13-inference-overview/u4-d13-inference-overview.html#1)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/main/course-materials/_slides/u4-d13-inference-overview)
:::
:::
## Labs
::: lab
**Lab 10: Grading the professor, Pt. 1**
Fitting and interpreting simple linear regression models
::: instructions
[Instructions](https://datasciencebox.org/course-materials/lab-instructions/lab-10/lab-10-slr-course-evals.html)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/lab-instructions/lab-10)
:::
::: starter
[Starter](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/starters/lab/lab-10-slr-course-evals)
:::
:::
::: lab
**Lab 11: Grading the professor, Pt. 2**
Fitting and interpreting multiple linear regression models
::: instructions
[Instructions](https://datasciencebox.org/course-materials/lab-instructions/lab-11/lab-11-mlr-course-evals.html)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/lab-instructions/lab-11)
:::
::: starter
[Starter](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/starters/lab/lab-11-mlr-course-evals)
:::
:::
::: lab
**Lab 12: Smoking while pregnant**
Constructing confidence intervals, conducting hypothesis tests, and interpreting results in context of the data
::: instructions
[Instructions](https://datasciencebox.org/course-materials/lab-instructions/lab-12/lab-12-inference-smoking.html)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/lab-instructions/lab-12)
:::
::: starter
[Starter](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/starters/lab/lab-12-inference-smoking)
:::
:::
## Homework assignments
::: homework
**HW 7: Bike rentals in DC**
Exploratory data analysis and fitting and interpreting models
::: instructions
[Instructions](https://datasciencebox.org/course-materials/hw-instructions/hw-07/hw-07-bike-rentals-dc.html)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/hw-instructions/hw-07)
:::
::: starter
[Starter](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/starters/hw/hw-07-bike-rentals-dc)
:::
:::
::: homework
**HW 8: Exploring the GSS**
Fitting and interpreting models
::: instructions
[Instructions](https://datasciencebox.org/course-materials/hw-instructions/hw-08/hw-08-exploring-gss.html)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/hw-instructions/hw-08)
:::
::: starter
[Starter](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/starters/hw/hw-08-exploring-gss)
:::
:::
::: homework
**HW 9: Modelling the GSS**
Model validation and inference
::: instructions
[Instructions](https://datasciencebox.org/course-materials/hw-instructions/hw-09/hw-09-modeling-gss.html)
:::
::: source
[Source](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/hw-instructions/hw-09)
:::
::: starter
[Starter](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/starters/hw/hw-09-modeling-gss)
:::
:::