-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminimization_synthetic_data.jl
240 lines (202 loc) · 9.77 KB
/
minimization_synthetic_data.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#using PyPlot
using Statistics
using Optim
using ForwardDiff
using JLD
using LineSearches
println("hola")
auxpath=pwd()
if occursin("Users",auxpath)
path_functions="C:\\Users\\Tiffany\\Google Drive\\WORKING_MEMORY\\MODEL\\HMM_wm_mice-main\\functions\\"
path_figures="C:\\Users\\Tiffany\\Google Drive\\WORKING_MEMORY\\MODEL\\HMM_wm_mice-main\\figures\\"
# path_data="C:\\Users\\Tiffany\\Google Drive\\WORKING_MEMORY\\MODEL\\HMM_wm_mice-main\\synthetic\\"
path_data="C:\\Users\\Tiffany\\Google Drive\\WORKING_MEMORY\\MODEL\\HMM_wm_mice-main\\real\\"
path_results="C:\\Users\\Tiffany\\Google Drive\\WORKING_MEMORY\\MODEL\\HMM_wm_mice-main\\results\\"
else
path_functions="/home/tiffany/HMM_wm_mice-main/functions/"
path_figures="/home/tiffany/HMM_wm_mice-main/figures/"
# path_data="/home/tiffany/HMM_wm_mice-main/synthetic/" # when using synthetic data
path_data="/home/tiffany/HMM_wm_mice-main/real/" # when using synthetic data
path_results="/home/tiffany/HMM_wm_mice-main/results/"
end
include(path_functions*"functions_wm_mice.jl")
include(path_functions*"function_simulations.jl")
include(path_functions*"functions_mle.jl")
#include(path_functions*"behaviour_analysis.jl")
#being a chicken
# consts=["mu_k","c4","mu_b","tau_w","tau_l","lambda"]
# args=["pi","t11","t22","c2","sigma","x0","beta_w","beta_l"]
# lower=[0.0,0.0,0.0,0.0, 0.05,-1.0,-10.0, -10.0]
# upper=[1.0,1.0,1.0,10.0, 10.0, 1.0,10.0,10.0]
# model="pit11t22c2SigmaX0Beta_wBeta_l"
#being a chicken
# consts=["mu_k","c4","mu_b","tau_w","tau_l","lambda"]
# args=["pi","t11","t22","c2","sigma","x0","beta_w","beta_l"]
# lower=[0.0,0.0,0.0,0.0, 0.05,-1.0,-10.0, -10.0]
# upper=[1.0,1.0,1.0,10.0, 10.0, 1.0,10.0,10.0]
# model="pit11t22c2SigmaX0Beta_wBeta_l_Muk1"
# consts=["mu_k","c4","mu_b","tau_w","tau_l","lambda"]
# args=["pi","t11","t22","c2","sigma","x0","beta_w","beta_l"]
# lower=[0.0,0.0,0.0,0.0, 0.05,-1.0,-10.0, -10.0]
# upper=[1.0,1.0,1.0,10.0, 10.0, 1.0,10.0,10.0]
# model="pit11t22c2SigmaX0Beta_wBeta_l"
#being a chicken 2
#
# consts=["sigma","c4","x0","tau_w","tau_l","lambda"]
# args=["pi","t11","t22","mu_k","c2","mu_b","beta_w","beta_l","beta_bias"]
# lower=[0.0,0.0, 0.0, 0.0, 0.0, -10.0, -10.0, -10.0, -10.0]
# upper=[1.0,1.0, 1.0, 10.0,10.0, 10.0, 10.0, 10.0, 10.0]
# model="pit11t22Mukc2MubBeta_wBeta_lBeta_bias"
# name_of_file = "data_set"*string(data_set_num)*"_50Sessions.jld"
#Full model
# consts=["c4","mu_b","tau_w","tau_l","lambda"]
# args=["pi","t11","t22","mu_k","c2","sigma","x0","beta_w","beta_l"]
# lower=[0.0,0.0,0.0,0.0,0.0, 0.05,-1.0,-10.0, -10.0]
# upper=[1.0,1.0,1.0,1.0,10.0, 10.0, 1.0,10.0,10.0]
# model="pit11t22Mukc2SigmaX0Beta_wBeta_l"
# #Full model2
# consts=["mu_k","mu_b","tau_w","tau_l","lambda"]
# args=["pi","t11","t22","c2","c4","sigma","x0","beta_w","beta_l"]
# lower=[0.0,0.0,0.0,0.0,0.0, 0.05, -1.0,-10.0, -10.0]
# upper=[1.0,1.0,1.0,10.0,10.0, 10.0, 1.0,10.0,10.0]
# model="pit11t22c2c4SigmaX0Beta_wBeta_l"
#Real data_set
consts=["sigma","c4","x0","tau_w","tau_l","lambda"]
args=["pi","t11","t22","mu_k","c2","mu_b","beta_w","beta_l","beta_bias"]
lower=[0.0,0.0, 0.0, 0.0, 0.0, -10.0, -10.0, -10.0, -10.0]
upper=[1.0,1.0, 1.0, 10.0,10.0, 10.0, 10.0, 10.0, 10.0]
model="N24"
name_of_file = "session_N24_test2.jld"
#Ntrials=10000
PossibleOutputs=[1,2]
Nstates=2
Nconditions=10
NDataSets=1
data_set_num=5
#icondition=30
ParamInitial=zeros(length(args))
PiInitial=zeros(2)
for icondition in 1:Nconditions
println("Initial condition: ", icondition)
for data_set_num in 1:NDataSets
println("Dataset: ",data_set_num)
data_filename=path_data*name_of_file
data=load(data_filename)
#y=data["y"] #this might need to be updated when fitting the entire model
y=zeros(length(consts))
for i in 1:length(consts)
y[i]=data["param"][consts[i]]
end
#y[1]=1.0 ##### REMOVE THIS #### only for testing that we can find good models with diferent parameters
println(data["param"])
for iparam in 1:length(lower)
ParamInitial[iparam]=lower[iparam]+ (upper[iparam]-lower[iparam])*rand()
end
XInitial=ParamInitial[4:end] #i need to separate the parameters fitted in the different maximization phases
#Fit using originial parameters as initial parameters
#try
# PFit,TFit,PiFit,Ll,ParamFit,xfit=fitBaumWelchAlgorithm(data["stim"][1:Ntrials],data["delays"],data["idelays"][1:Ntrials],
# data["choices"][1:Ntrials],data["past_choices"][1:Ntrials,:],data["past_rewards"][1:Ntrials,:],args,ParamInitial,XInitial,lower,upper,
# PossibleOutputs,Nstates,consts,y)
PFit,TFit,PiFit,Ll,ParamFit,xfit=fitBaumWelchAlgorithm_Nsessions(data["stim"],data["delays"],data["idelays"],
data["choices"],data["past_choices"],data["past_rewards"],args,ParamInitial,XInitial,lower,upper,
PossibleOutputs,Nstates,consts,y)
_,_,Pstate,_=ProbabilityState_Nsessions(PFit,TFit,data["choices"],PiFit)
println("ParamFit",ParamFit)
#PFit,TFit,PiFit,Ll,ParamFit,xfit=0,0,0,0,0,0
path_final=path_results*model*"Nsessions_dataset"*string(data_set_num)*"/"
if isdir(path_final)==false
mkdir(path_final)
end
ifile=0
filename=path_final*"initial_condition"*string(ifile)*".jld"
while isfile(filename)
ifile=ifile+1
filename=path_final*"initial_condition"*string(ifile)*".jld"
end
print(PFit)
print(filename)
JLD.save(filename,"PFit",PFit,"TFit",TFit,"PiFit",PiFit,"LL_all",Ll,"LL",Ll[end],"ParamFit",
ParamFit,"xfit",xfit,"args",args,"consts",consts,"y",y,"lower",lower,"upper",upper,"PiInitial",PiInitial,
"ParamInitial",ParamInitial,"XInitial",XInitial,"Pstate",Pstate)
# catch
# println("Something wrong during EM algorithm")
# end
end
end
#Fit random parameters as initial parameters
# xini=[ 0.4, 0.8, 0.0, 4.0, 1.0]
# PDwDw2=0.5
# PBiasBias2=0.7
# Tx=[PDwDw2 1-PDwDw2; 1-PBiasBias2 PBiasBias2]
# PNew2,TNew2,PiNew2,Ll2,ParamFit2,xfit2=fitBaumWelchAlgorithm(stim,delays,idelays,choices,past_choices,past_rewards,args,xini,lower,upper,Tx,PiInitialOriginal,PossibleOutputs,consts,y)
# PiNew2,PFwdState2,PBackState2,Pstate2,xi=ProbabilityState(PNew,TNew,choices,PiNew)
# Nconditions=1
# Nstates=2
# XInitial=zeros(Nconditions,length(lower))
# TInitialAll=zeros(Nconditions,Nstates,Nstates)
# ConfideceIntervals=zeros(Nconditions,length(lower)+Nstates)
# Ll=zeros(Nconditions)
# ParamFit=zeros(Nconditions,length(lower)+Nstates)
#
# PiInitial=zeros(Nconditions,Nstates)
#
# PFit=zeros(Nconditions,Ntrials,Nstates,NPossibleOutputs)
#
# TFit=zeros(Nconditions,Nstates,Nstates)
# PiFit=zeros(Nconditions,Nstates)
#
# for icondition in 1:Nconditions
# println("icondition:", icondition)
# #random initial conditions
# for iparam in 1:length(lower)
# XInitial[icondition,iparam]=lower[iparam]+ (upper[iparam]-lower[iparam])*rand()
# end
#
# pdwdw=rand()
# pbiasbias=rand()
# TInitial=[pdwdw 1-pdwdw ; 1-pbiasbias pbiasbias]
# TInitialAll[icondition,:,:]=TInitial
# aux=rand()
# PiInitial[icondition,1]=aux
# PiInitial[icondition,2]=1-aux
#
# #PNew,TNew,PiNew,Ll[icondition],ParamFit[icondition,:],xfit=fitBaumWelchAlgorithm(stim,delays,idelays,choices,past_choices,past_rewards,args,XInitial[icondition,:],lower,upper,TInitial,PiInitial[icondition,:],PossibleOutputs,consts,y)
# PFit[icondition,:,:,:],TFit[icondition,:,:],PiFit[icondition,:],Ll[icondition],ParamFit[icondition,:],xfit=fitBaumWelchAlgorithm(stim,delays,idelays,choices,past_choices,past_rewards,args,XInitial[icondition,:],lower,upper,TInitial,PiInitial[icondition,:],PossibleOutputs,consts,y)
#
# #ConfideceIntervals[icondition,:]=ComputeConfidenceIntervals(stim,delays,idelays,choices,past_choices,past_rewards,args,xfit,lower,upper,TNew,PiNew,PossibleOutputs,consts,y)
#
# end
#filename_save="/home/genis/wm_mice/synthetic_data/minimize_sigma_x0_betal_pdwdw_pbiasbias_Ntrials"*string(Ntrials)*".jld"
# LL=zeros(length(PDwVector),length(PBiasVector))
# for idw in 1:length(PDwVector)
# for ibias in 1:length(PBiasVector)
# LL[idw,ibias]=Compute_negative_LL_hmm_module(PDwVector[idw],PBiasVector[ibias],PrDw,PrBias,choices)
# #LL[idw,ibias]=Compute_negative_LL_hmm_module(PDwDw,PBiasBias,PDwVector[idw],PBiasVector[ibias],choices)
#
# end
# end
# figure()
# imshow(LL,origin="lower",extent=[PBiasVector[1],PBiasVector[end],PDwVector[1],PDwVector[end]],aspect="auto",cmap="hot")
# xlabel("PbiasBias")
# ylabel("PDwDw")
# plot([ PBiasBias],[PDwDw],"bo")
#
# #plot( [ PrBias],[PrDw],"bo")
#
#
# a=findall(x->x==minimum(LL),LL)
# plot([ PBiasVector[a[1][2]]],[PDwVector[a[1][1]]],"bs")
#
# colorbar()
# show()
# filename_save="/home/genis/wm_mice/synthetic_data/minimize_sigma_c2_Ntrials"*string(Ntrials)*".jld"
# filename_save="/home/genis/wm_mice/synthetic_data/minimize_sigma_c2_Ntrials"*string(Ntrials)*"_NDataSets"*string(NDataSets)*".jld"
# filename_save="/home/genis/wm_mice/synthetic_data/minimize_betaw_betal_only_history_bias_Ntrials"*string(Ntrials)*".jld"
# filename_save="/home/genis/wm_mice/synthetic_data/minimize_betaw_betal_only_history_bias_Ntrials"*string(Ntrials)*"_NDataSets"*string(NDataSets)*".jld"
# filename_save="/home/genis/wm_mice/synthetic_data/minimize_sigma_c2_wm_only_Ntrials"*string(Ntrials)*"_NDataSets"*string(NDataSets)*".jld"
# filename_save="/home/genis/wm_mice/synthetic_data/minimize_sigma_x0_betal_pdwdw_pbiasbias_Ntrials"*string(Ntrials)*".jld"
#
# save(filename_save,"x",x,"args",args,"y",y,"consts",consts,"XInitial",XInitial,"Ll",Ll,
# "PiInitial",PiInitial,"TInitialAll",TInitialAll,"ConfideceIntervals",ConfideceIntervals,
# "LlOriginal",LlOriginal)