-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexecuteExample.py
24 lines (20 loc) · 931 Bytes
/
executeExample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from recommendations import critics
from recommendations import sim_distance
from recommendations import sim_pearson
from recommendations import pearsonTopMatches
from recommendations import distanceTopMatches
from recommendations import getRecommendations
print(critics['Lisa Rose']['Lady in the Water'])
critics['Toby']['Snakes on a Plane']=5.0
print(critics['Toby'])
result = {'euclidean distance socre' : sim_distance(critics, 'Lisa Rose', 'Gene Seymour')}
print(result)
result = {'Pearson correlation score' : sim_pearson(critics, 'Lisa Rose', 'Gene Seymour')}
print(result)
print(distanceTopMatches(critics, 'Toby', n=3))
print(pearsonTopMatches(critics, 'Toby', n=3))
print('-------------------------------------')
print(getRecommendations(critics, 'Toby'))
print('-------------------------------------')
print('-------------------------------------')
print(getRecommendations(critics, 'Toby', similarity=sim_distance))