本文档介绍如何将TensorFlow模型导出为X2Paddle支持的模型格式。 TensorFlow目前一般分为3种保存格式(checkpoint、FrozenModel、SavedModel),X2Paddle支持的是FrozenModel(将网络参数和网络结构同时保存到同一个文件中,并且只保存指定的前向计算子图),下面示例展示了如何导出X2Paddle支持的模型格式。
下列代码Tensorflow 1.X下使用
- checkpoint模型+代码 步骤一 下载模型参数文件
wget http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz
tar xzvf vgg_16_2016_08_28.tar.gz
步骤二 加载和导出模型
#coding: utf-8
import tensorflow.contrib.slim as slim
from tensorflow.contrib.slim.nets import vgg
from tensorflow.python.framework import graph_util
import tensorflow as tf
# 固化模型函数
# output_tensor_names: list,指定模型的输出tensor的name
# freeze_model_path: 模型导出的文件路径
def freeze_model(sess, output_tensor_names, freeze_model_path):
out_graph = graph_util.convert_variables_to_constants(
sess, sess.graph.as_graph_def(), output_tensor_names)
with tf.gfile.GFile(freeze_model_path, 'wb') as f:
f.write(out_graph.SerializeToString())
print("freeze model saved in {}".format(freeze_model_path))
# 加载模型参数
sess = tf.Session()
inputs = tf.placeholder(dtype=tf.float32,
shape=[None, 224, 224, 3],
name="inputs")
logits, endpoint = vgg.vgg_16(inputs, num_classes=1000, is_training=False)
load_model = slim.assign_from_checkpoint_fn(
"vgg_16.ckpt", slim.get_model_variables("vgg_16"))
load_model(sess)
# 导出模型
freeze_model(sess, ["vgg_16/fc8/squeezed"], "vgg16.pb")
- 纯checkpoint模型 文件结构:
|--- checkpoint
|--- model.ckpt-240000.data-00000-of-00001
|--- model.ckpt-240000.index
|--- model.ckpt-240000.meta
加载和导出模型:
#coding: utf-8
from tensorflow.python.framework import graph_util
import tensorflow as tf
# 固化模型函数
# output_tensor_names: list,指定模型的输出tensor的name
# freeze_model_path: 模型导出的文件路径
def freeze_model(sess, output_tensor_names, freeze_model_path):
out_graph = graph_util.convert_variables_to_constants(
sess, sess.graph.as_graph_def(), output_tensor_names)
with tf.gfile.GFile(freeze_model_path, 'wb') as f:
f.write(out_graph.SerializeToString())
print("freeze model saved in {}".format(freeze_model_path))
# 加载模型参数
# 此处需要修改input_checkpoint(checkpoint的前缀)和save_pb_file(模型导出的文件路径)
input_checkpoint = "./tfhub_models/save/model.ckpt"
save_pb_file = "./tfhub_models/save.pb"
sess = tf.Session()
saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True)
saver.restore(sess, input_checkpoint)
# 此处需要修改freeze_model的第二个参数,指定模型的输出tensor的name
freeze_model(sess, ["vgg_16/fc8/squeezed"], save_pb_file)
- SavedModel模型 文件结构:
|-- variables
|------ variables.data-00000-of-00001
|------ variables.data-00000-of-00001
|-- saved_model.pb
加载和导出模型:
#coding: utf-8
import tensorflow as tf
sess = tf.Session(graph=tf.Graph())
# tf.saved_model.loader.load最后一个参数代表saved_model的保存路径
tf.saved_model.loader.load(sess, {}, "/mnt/saved_model")
graph = tf.get_default_graph()
from tensorflow.python.framework import graph_util
# 固化模型函数
# output_tensor_names: list,指定模型的输出tensor的name
# freeze_model_path: 模型导出的文件路径
def freeze_model(sess, output_tensor_names, freeze_model_path):
out_graph = graph_util.convert_variables_to_constants(
sess, sess.graph.as_graph_def(), output_tensor_names)
with tf.gfile.GFile(freeze_model_path, 'wb') as f:
f.write(out_graph.SerializeToString())
print("freeze model saved in {}".format(freeze_model_path))
# 导出模型
freeze_model(sess, ["logits"], "model.pb")