-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
129 lines (109 loc) · 4.13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import tqdm
import time
import argparse
from all_model import get_model
def get_args():
parser = argparse.ArgumentParser(description="CIFAR10 or CIFAR100 Training")
parser.add_argument("--lr", default=1e-2, type=float, help="Learning Rate")
parser.add_argument("--batch_size", default=128, type=int)
parser.add_argument("--epochs", default=50, type=int)
parser.add_argument("--resume", "-r", default=None, help="Resume from pre-train model")
parser.add_argument("--net", default="vgg16", help="Which model")
parser.add_argument("--num_classes", default=10, type=int, help="set CIFAR10 or 100")
parser.add_argument("-c", "--count_parameters", action="store_true",)
return parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0
start_epoch = 0
# Prepare Date
args = get_args()
transforms_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transforms_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
if args.num_classes == 10:
train_set = torchvision.datasets.CIFAR10(
root="data/", train=True, download=True, transform=transforms_train
)
test_set = torchvision.datasets.CIFAR10(
root="data/", train=False, download=True, transform=transforms_test
)
else:
train_set = torchvision.datasets.CIFAR100(
root="data/", train=True, download=True, transform=transforms_train
)
test_set = torchvision.datasets.CIFAR100(
root="data/", train=False, download=True, transform=transforms_test
)
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=True, num_workers=0
)
test_loader = torch.utils.data.DataLoader(
test_set, batch_size=args.batch_size, shuffle=False, num_workers=0
)
if args.net:
print(f"Loading Net {args.net} ...")
net = get_model(args.net, num_classes=args.num_classes)
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
classes = train_set.classes
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
def val(epoch, t_epoch):
net.eval()
val_loss = 0
correct = 0
total = 0
pbar = tqdm.tqdm(test_loader)
for batch, (inputs, targets) in enumerate(pbar):
inputs, targets = inputs.to(device), targets.to(device)
output = net(inputs)
loss = criterion(output, targets)
val_loss += loss.item()
_, predict_maxidx = output.max(1)
correct += predict_maxidx.eq(targets).sum().item()
total += inputs.size(0)
pbar.set_description("Epoch %3d/%3d - Val_Loss : %.3f | Val_Acc: %.3f%%" % (epoch, t_epoch, val_loss/(batch+1), 100.*correct/total))
def train(epoch, t_epoch):
net.train()
train_loss = 0
correct = 0
total = 0
pbar = tqdm.tqdm(train_loader)
for batch, (inputs, targets) in enumerate(pbar):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
pbar.set_description("Epoch %3d/%3d - Train_Loss : %.3f | Train_Acc: %.3f%%" % (epoch, t_epoch, train_loss/(batch+1), 100.*correct/total))
if __name__ == "__main__":
if args.count_parameters:
print('# Parameters:', sum(param.numel() for param in net.parameters()))
else:
for epoch in range(args.epochs):
train(epoch, args.epochs)
val(epoch, args.epochs)
# a, b = train_set.__getitem__(1)
# print(b)