-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathapp.R
270 lines (212 loc) · 9.19 KB
/
app.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# required packages
library(tidyverse)
library(shiny)
library(shinythemes)
library(RColorBrewer)
library(leaflet)
library(plotly)
# Load Data ---------------------------------------------------------------
# Get what is in the 'Data' directory
city_list <- list.files(path = "Data/") %>%
grep(pattern = "*\\.csv$", value = TRUE) %>%
gsub(pattern = "*\\.csv$", replacement = "")
# Combine all data frames into a list
cities <- list.files(path = "Data", pattern = "\\.csv$", full.names = TRUE) %>%
lapply(FUN = read.csv, stringsAsFactors = FALSE)
# Assign names
names(cities) <- toupper(city_list)
# Helper Function ---------------------------------------------------------
# Set main color for room type
room_cols <- brewer.pal(3, "Set1")
# For Leaflet's markers color
pal <- colorFactor(room_cols, domain = cities[[1]]$room_type %>% unique())
# Modify ggplot theme
old <- theme_set(theme_light() +
theme(legend.position = "none",
axis.title = element_text(family = "Menlo", colour = "navyblue"),
axis.text = element_text(family = "Menlo")
))
# UI ----------------------------------------------------------------------
ui <- fillPage(
# Custom CSS goes here
tags$head(
tags$style(HTML("
body {
overflow: auto;
}
.leaflet-control.legend {
font-family: 'Futura', mono, sans;
width: 12em;
margin-right: 20px;
}
"))
),
# Theme selection
theme = shinythemes::shinytheme("yeti"),
fluidPage(
# Upper half
leafletOutput("map", height = 400, width = "100%"),
hr(),
uiOutput("h4"),
fluidRow(
# Lower half
column(width = 2,
selectInput("city", label = "Select A City", choices = c("", toupper(city_list))),
selectInput("area", label = "Filter By Area", character(0)),
verbatimTextOutput("roomInBounds")),
column(width = 10,
column(6, plotlyOutput("price")),
column(6, plotlyOutput("host"))
)
),
hr(),
span(icon("github"), a("Source Code", href = "https://github.com/tmasjc/Airbnb_Market_Data"))
)
)
# Server ------------------------------------------------------------------
server <- function(input, output, session){
# Select a city from a list of cities
selected_city <- reactive({
req(input$city)
cities[[input$city]]
})
# Text for the main header
output$h4 <- renderUI({
text <- ifelse(isTruthy(input$city), input$city, "Select A City To Get Started.")
h4(paste("Hello,", text), style = "text-align: center;")
})
# Geography concentration goes here
output$map <- renderLeaflet({
# Create a base map
selected_city() %>%
leaflet() %>%
addProviderTiles(providers$CartoDB.Positron) %>%
# customise viewport to fit
fitBounds(lng1 = ~min(longitude),
lat1 = ~min(latitude),
lng2 = ~max(longitude),
lat2 = ~max(latitude)) %>%
addLegend("bottomleft", pal = pal, values = ~ room_type, title = "Room Type") %>%
# For resetting zoom
addEasyButton(
easyButton("fa-arrows-alt", title = "Reset Zoom",
onClick = JS("function(btn, map){ map.setZoom(11); }"))
)
})
# Sublevel of city
area <- reactive({
# some cities have a larger subcity cluster called neightbourhood_group
if(sum(is.na(selected_city()[["neighbourhood_group"]] > 100))){
unique(selected_city()[["neighbourhood"]])
}else{
unique(selected_city()[["neighbourhood_group"]])
}
})
# Generate neighbourhood selection based on selected area (dynamic UI)
observe({
updateSelectInput(session, "area", choices = c("", area()))
})
# A subset of city data frame based on selected area
area_df <- reactive({
req(input$area)
# depends on data available
selected_city() %>% filter(neighbourhood == input$area |
neighbourhood_group == input$area)
})
# Prepare neighbourhood bounding lng and lat for Leaflet proxy
bounds <- reactive({
list(
lng = range(area_df()$longitude),
lat = range(area_df()$latitude)
)
})
# Update data points within current bounding box
bounded_area <- reactive({
req(input$map_bounds, cancelOutput = TRUE)
# Get map boundary from Leaflet
bounds <- input$map_bounds
latRng <- range(bounds$north, bounds$south)
lngRng <- range(bounds$east, bounds$west)
# Filter area given boundary
subset(area_df(),
latitude >= latRng[1] &
latitude <= latRng[2] &
longitude >= lngRng[1] &
longitude <= lngRng[2])
})
# Leaflet proxy to modify map aspect (add markers here)
observeEvent(input$area, {
leafletProxy("map", data = area_df()) %>%
clearMarkers() %>%
addCircleMarkers(lng = ~longitude,
lat = ~latitude,
color = ~pal(room_type),
radius = 5,
stroke = FALSE,
fillOpacity = 0.5) %>%
# Fit bounding box based on neighbourhood
fitBounds(lng1 = bounds()$lng[1],
lng2 = bounds()$lng[2],
lat1 = bounds()$lat[1],
lat2 = bounds()$lat[2])
})
# Calculate total of respective room type (within bounding box)
output$roomInBounds <- renderPrint({
# Total count by room type
df <- bounded_area() %>% group_by(room_type) %>% summarise(n = n()) %>% as.data.frame(row.names = NULL)
colnames(df) <- c("Room Type", "Quantity")
df
})
# Data points for price density and listings per host analysis
rv <- reactive({
# ** Require this to trigger first selected city **
input$map_bounds
# If subcity (area) is not selected, fall back to city data frame
if(!input$area == ""){
bounded_area()
}else{
selected_city()
}
})
# Slow down reactive expression to prevent invalidation when switching city
rv_d <- rv %>% debounce(750)
# Price distribution goes here
output$price <- renderPlotly({
# Prevent invalidation when switching from area to area (further investigation required)
withProgress(message = "Rendering...", value = 0.5, {
p <- rv_d() %>%
# filter right tail outlier using Tukey's IQR method
filter(price < (1.5 * IQR(price) + quantile(price, .75))) %>%
ggplot(aes(price, fill = room_type, col = room_type, text = "")) +
geom_density(alpha = 0.6) +
scale_color_manual(values = room_cols) +
scale_fill_manual(values = room_cols) +
labs(x = "Price", y = "Kernel Density Estimation")
setProgress(1)
})
ggplotly(p, tooltip = c("text"))
})
# Listings per host goes here
output$host <- renderPlotly({
withProgress(message = "Rendering...", value = 0,5, {
p <- rv_d() %>%
group_by(host_id, host_name) %>%
summarise(n = n_distinct(id)) %>%
# Do a count on n (how many hosts own 3, 4..n houses?)
ungroup() %>% count(n) %>%
filter(n > 1) %>%
ggplot(aes(n, nn, text = paste("# Listings:", n, "\n# Hosts:", nn))) +
# geom_hline(aes(yintercept = 0), lty = 3) +
geom_bar(stat = 'identity', width = 0.1, fill = "skyblue", alpha = 0.6) +
geom_point(size = 3, col = "royalblue") +
scale_x_continuous(breaks = scales::pretty_breaks(n = 5)) +
scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) +
coord_flip() +
labs(x = "# Listings", y = "# Hosts with y listings")
setProgress(1)
})
ggplotly(p, tooltip = c("text"))
})
}
# run App
shinyApp(ui = ui, server = server)