-
Notifications
You must be signed in to change notification settings - Fork 226
/
Copy pathbatches.cc
101 lines (85 loc) · 2.52 KB
/
batches.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#include "batches.h"
#include <string>
// random initialization of sequences etc.
namespace {
// very simple "random" number generator; this
// is just used for initializations
double state = getenv("seed") ? atof(getenv("seed")) : 0.1;
inline double randu() {
state = 189843.9384938 * state + 0.328340981343;
state -= floor(state);
return state;
}
inline double randn() {
double u1 = randu();
double u2 = randu();
double r = -2 * log(u1);
double theta = 2 * M_PI * u2;
double z0 = r * cos(theta);
return z0;
}
}
namespace ocropus {
// Random initializations with different distributions.
void rinit(TensorMap2 a, Float s, const char *mode_, Float offset) {
int n = a.dimension(0), m = a.dimension(1);
std::string mode(mode_);
if (mode == "unif") {
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) a(i, j) = 2 * s * randu() - s + offset;
} else if (mode == "negbiased") {
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) a(i, j) = 3 * s * randu() - 2 * s + offset;
} else if (mode == "pos") {
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) a(i, j) = s * randu() + offset;
} else if (mode == "neg") {
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) a(i, j) = -s * randu() + offset;
} else if (mode == "normal") {
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) a(i, j) = s * randn() + offset;
}
}
void rinit(Tensor2 &t, int r, int c, Float s, const char *mode_, Float offset) {
// use a temporary so that initialization of GPU tensors works
Tensor2 temp;
temp.resize(r, c);
rinit(temp(), s, mode_, offset);
t = temp;
}
void rinit(Batch &m, int r, int c, Float s, const char *mode, Float offset) {
rinit(m.v, r, c, s, mode, offset);
m.zeroGrad();
}
void rinit(Sequence &m, int N, int r, int c, Float s, const char *mode,
Float offset) {
m.steps.resize(N);
for (int t = 0; t < N; t++) rinit(m[t], r, c, s, mode, offset);
}
// checking for NaNs in different objects
bool anynan(TensorMap2 a) {
for (int j = 0; j < a.dimension(0); j++) {
for (int k = 0; k < a.dimension(1); k++) {
float x = a(j, k);
if (std::isnan(x)) return true;
}
}
return false;
}
bool anynan(Batch &a) {
if(anynan(a.v())) return true;
if(anynan(a.d())) return true;
return false;
}
bool anynan(Params &a) {
if (anynan(a.v())) return true;
if (anynan(a.d())) return true;
return false;
}
bool anynan(Sequence &a) {
for (int i = 0; i < a.size(); i++)
if (anynan(a[i])) return true;
return false;
}
}