forked from wizard1203/FuseFL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalg_train.py
636 lines (527 loc) · 27.5 KB
/
alg_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6
import argparse
import copy
import os
import shutil
import sys
import warnings
import torchvision.models as models
import numpy as np
from tqdm import tqdm
import pdb
import logging
import time
from helpers.datasets import partition_data, load_data, get_image_size, get_num_of_labels
from helpers.utils import get_dataset, average_weights, DatasetSplit, BackdoorDS, KLDiv, setup_seed, test, progressive_test
from helpers.exp_path import ExpTool
from models.generator import Generator
from models.nets import CNNCifar, CNNMnist, CNNCifar100
from models.pnn import PNN
from models.pnn_cnn import PNN_CNN, pnn_resnet18, pnn_resnet50
from models.fl_pnn import Federated_PNN
from models.fl_pnn_cnn import Federated_PNN_CNN, fl_pnn_resnet18, fl_pnn_resnet50
from models.mlp import MLP
from models.fl_exnn import (MLP_Block, CNN_Block,
merge_layer, Federated_EXNN, Federated_EXNNLayer_global, Federated_EXNNLayer_local,
fl_exnn_resnet18, fl_exnn_resnet50,
)
from models.seq_model import Sequential_SplitNN, ReconMIEstimator
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
import torch.nn.functional as F
from models.resnet import resnet18, resnet50, get_res18_out_channels
from models.vit import deit_tiny_patch16_224
import wandb
from models.configs import Split_Configs, EXNN_Split_Configs
warnings.filterwarnings('ignore')
upsample = torch.nn.Upsample(mode='nearest', scale_factor=7)
from locals.fedavg import LocalUpdate
from locals.fl_progressive import FedPnnLocalUpdate
from locals.progressive import PnnLocalUpdate
from locals.fl_expandable import FedEXNNLocalUpdate
from locals.ccvr import (compute_classes_mean_cov, generate_virtual_representation,
calibrate_classifier, get_means_covs_from_client)
from utils import seq_map_values, batch, accuracy, show_model_layers
def obtain_projection_head(before_cls_feature_num, contrastive_projection_dim):
projector = nn.Sequential(
nn.Linear(before_cls_feature_num, before_cls_feature_num, bias=False),
nn.ReLU(),
nn.Linear(before_cls_feature_num, contrastive_projection_dim, bias=False),
)
return projector
class Ensemble(torch.nn.Module):
def __init__(self, model_list):
super(Ensemble, self).__init__()
self.models = model_list
def to(self, device):
for model in self.models:
model.to(device)
def forward(self, x):
logits_total = 0
for i in range(len(self.models)):
logits = self.models[i](x)
logits_total += logits
logits_e = logits_total / len(self.models)
return logits_e
def pretrain(args, device, logger, train_dataset, test_dataset,
train_user_groups, train_data_cls_counts,
test_user_groups, test_data_cls_counts,
global_test_loader, global_model, out_channels):
bst_acc = -1
description = "inference acc={:.4f}% loss={:.2f}, best_acc = {:.2f}%"
users = []
locals = []
before_cls_feature_num = out_channels[-1]
backdoor_test_loader = None
if args.backdoor_train:
backdoor_test_loader = DataLoader(BackdoorDS(test_dataset, args.backdoor_size, mode="random"),
batch_size=256, shuffle=False, num_workers=4)
# ===============================================
for idx in range(args.num_users):
logger.info("client {}".format(idx))
users.append("client_{}".format(idx))
if args.backdoor_train and idx < args.backdoor_n_clients:
local_update = LocalUpdate(args, train_dataset, test_dataset, global_test_loader,
train_user_groups[idx], test_user_groups[idx], copy.deepcopy(global_model), backdoor_train=True)
else:
local_update = LocalUpdate(args, train_dataset, test_dataset, global_test_loader,
train_user_groups[idx], test_user_groups[idx], copy.deepcopy(global_model))
locals.append(local_update)
if args.contrastive_train:
# We use a MLP with one hidden layer to obtain z_i = g(h_i) = W(2)σ(W(1)h_i) where σ is a ReLU non-linearity.
projector = obtain_projection_head(before_cls_feature_num, args.contrastive_projection_dim)
local_update.add_CL_head(projector)
train_time = 0
total_epoch = 0
for epoch in range(args.local_ep):
start_time = time.time()
local_weights = []
train_losses = []
acc_list = []
pfl_acc_list = []
training_pfl_acc_list = []
if epoch % 10 == 0 or epoch < 10 or epoch == args.local_ep - 1:
if_test = True
else:
if_test = False
if_test = True
for idx in range(args.num_users):
# not load global model, for one-shot communication...
w, avg_train_loss, global_acc, pfl_acc, train_pfl_acc = locals[idx].update_weights(idx, 1, device, if_test=if_test)
acc_list.append(global_acc)
train_losses.append(avg_train_loss)
pfl_acc_list.append(pfl_acc)
training_pfl_acc_list.append(train_pfl_acc)
# local_weights.append(copy.deepcopy(w))
local_weights.append(w)
total_epoch += args.local_ep
avg_train_loss = np.mean(train_losses)
train_time += time.time() - start_time
global_weights = average_weights(local_weights)
global_model.load_state_dict(global_weights)
model_list = []
for i in range(len(local_weights)):
net = copy.deepcopy(global_model)
net.load_state_dict(local_weights[i])
model_list.append(net)
ensemble_model = Ensemble(model_list)
if if_test:
result_dict = {}
for idx in range(args.num_users):
result_dict["client_{}_acc".format(users[idx])] = acc_list[idx]
result_dict["pfl_acc_on_{}".format(users[idx])] = pfl_acc_list[idx]
result_dict["pfl_training_acc_on_{}".format(users[idx])] = training_pfl_acc_list[idx]
ExpTool.record(result_dict)
test_acc, test_loss = test(global_model, global_test_loader, device)
logger.info(f"avg acc: {test_acc}")
ensemble_acc, ensemble_loss = test(ensemble_model, global_test_loader, device)
if args.backdoor_train:
ensemble_backdoor_acc, ensemble_backdoor_loss = test(ensemble_model, backdoor_test_loader, device)
logger.info(f"ensemble_backdoor_acc: {ensemble_backdoor_acc}")
ExpTool.record({"ensemble_backdoor_acc": ensemble_backdoor_acc,
"ensemble_backdoor_loss": ensemble_backdoor_loss})
logger.info(f"ensemble acc: {ensemble_acc}")
ExpTool.record({"comm_round": 0, "local_epoch": total_epoch, "train_loss": avg_train_loss,
"test_acc": test_acc, "ensemble_acc": ensemble_acc, "train_time": train_time})
ExpTool.upload()
count_para = 0
for local_weight in local_weights:
# for key, value in local_weight.named_parameters():
for key, value in local_weight.items():
count_para += value.numel()
summary_dict = {"count_paras": count_para}
logger.info(f"summary_dict: {summary_dict}")
ExpTool.summary(summary_dict)
# ===============================================
if not args.checkpoint == "no":
ExpTool.save_pickle(local_weights, args.checkpoint, exp_dir=True)
# ExpTool.load_pickle
# torch.save(local_weights, '{}_{}clients_{}.pkl'.format(args.dataset, args.num_users, args.alpha))
return global_model, global_weights, local_weights, model_list
def progressive(args, device, logger, train_dataset, test_dataset,
train_user_groups, train_data_cls_counts,
test_user_groups, test_data_cls_counts,
global_test_loader, global_model, out_channels):
bst_acc = -1
description = "inference acc={:.4f}% loss={:.2f}, best_acc = {:.2f}%"
users = []
locals = []
# ===============================================
for idx in range(args.num_users):
logger.info("client {}".format(idx))
users.append("client_{}".format(idx))
local_update = PnnLocalUpdate(args, train_dataset, test_dataset, global_test_loader,
train_user_groups[idx], test_user_groups[idx])
locals.append(local_update)
global_model.train()
global_model.to(device)
# Now, there is no local weights in progressive FL, because the model is increasing...
training_pfl_acc_list = []
train_losses = []
train_time = 0
for idx in range(args.num_users):
start_time = time.time()
# not load global model, for one-shot communication...
_, avg_train_loss, _, train_pfl_acc = locals[idx].update_weights(idx, args.local_ep, global_model, device, if_test=True)
training_pfl_acc_list.append(train_pfl_acc)
train_losses.append(avg_train_loss)
train_time += time.time() - start_time
avg_train_loss = np.mean(train_losses)
# Test global and ensemble model
# NOTE: global weights need not to be averaged
num_total_corrects = 0
num_total = 0
pfl_accs = []
for idx in range(args.num_users):
local = locals[idx]
num_total += len(local.global_test_loader.dataset)
pfl_acc, pfl_test_loss, correct = progressive_test(global_model, local.global_test_loader, idx, device)
pfl_accs.append(pfl_acc)
num_total_corrects += correct
test_acc = 100. * num_total_corrects / num_total
result_dict = {}
for idx in range(args.num_users):
result_dict["pfl_acc_on_{}".format(users[idx])] = pfl_accs[idx]
result_dict["pfl_training_acc_on_{}".format(users[idx])] = training_pfl_acc_list[idx]
logger.info(f"pfl_accs: {pfl_accs}")
logger.info(f"training_pfl_acc_list:{training_pfl_acc_list}")
logger.info(f"test_acc:{test_acc}")
ExpTool.record(result_dict)
logger.info("avg acc:")
ExpTool.record({"comm_round": 0, "local_epoch": args.local_ep, "train_loss": avg_train_loss,
"test_acc": test_acc, "train_time": train_time})
ExpTool.upload()
count_para = 0
for key, value in global_model.named_parameters():
count_para += value.numel()
summary_dict = {"count_paras": count_para}
logger.info(f"summary_dict: {summary_dict}")
ExpTool.summary(summary_dict)
# ===============================================
if not args.checkpoint == "no":
ExpTool.save_pickle(global_model.cpu().state_dict(), args.checkpoint, exp_dir=True)
# torch.save(global_model.cpu().state_dict(), '{}_{}_{}clients_{}.pkl'.format(args.type, args.dataset, args.num_users, args.alpha))
def fed_progressive(args, device, logger, train_dataset, test_dataset,
train_user_groups, train_data_cls_counts,
test_user_groups, test_data_cls_counts,
global_test_loader, global_model, out_channels):
bst_acc = -1
description = "inference acc={:.4f}% loss={:.2f}, best_acc = {:.2f}%"
users = []
locals = []
for idx in range(args.num_users):
logger.info("client {}".format(idx))
users.append("client_{}".format(idx))
local_update = FedPnnLocalUpdate(args, train_dataset, test_dataset, global_test_loader,
train_user_groups[idx], test_user_groups[idx])
locals.append(local_update)
global_model.train()
global_model.to(device)
# Now, there is no local weights in progressive FL, because the model is increasing...
training_pfl_acc_list = []
train_losses = []
train_time = 0
for idx in range(args.num_users):
# not load global model, for one-shot communication...
start_time = time.time()
_, avg_train_loss, _, train_pfl_acc = locals[idx].update_weights(idx, args.local_ep, global_model, device, if_test=True)
training_pfl_acc_list.append(train_pfl_acc)
train_losses.append(avg_train_loss)
train_time += time.time() - start_time
avg_train_loss = np.mean(train_losses)
# Test global and ensemble model
# NOTE: global weights need not to be averaged
logger.info("avg acc:")
test_acc, test_loss = test(global_model, global_test_loader, device)
pfl_accs = []
result_dict = {}
for idx in range(args.num_users):
result_dict["pfl_training_acc_on_{}".format(users[idx])] = training_pfl_acc_list[idx]
local_test_acc, _ = test(global_model, locals[idx].test_loader, device)
result_dict["pfl_acc_on_{}".format(users[idx])] = local_test_acc
pfl_accs.append(local_test_acc)
logger.info(f"pfl_accs: {pfl_accs}")
logger.info(f"training_pfl_acc_list:{training_pfl_acc_list}")
logger.info(f"test_acc:{test_acc}")
ExpTool.record(result_dict)
logger.info("avg acc:")
ExpTool.record({"comm_round": 0, "local_epoch": args.local_ep, "train_loss": avg_train_loss,
"test_acc": test_acc, "train_time": train_time})
ExpTool.upload()
count_para = 0
for key, value in global_model.named_parameters():
count_para += value.numel()
summary_dict = {"count_paras": count_para}
logger.info(f"summary_dict: {summary_dict}")
ExpTool.summary(summary_dict)
# ===============================================
if not args.checkpoint == "no":
ExpTool.save_pickle(global_model.cpu().state_dict(), args.checkpoint, exp_dir=True)
# torch.save(global_model.cpu().state_dict(), '{}_{}_{}clients_{}.pkl'.format(args.type, args.dataset, args.num_users, args.alpha))
def init_fedexnn_merged(args, split_modules, out_channels):
users = []
local_FedEXNN_models = {}
split_config = EXNN_Split_Configs[args.model][args.fedexnn_split_num]
num_of_classes = get_num_of_labels(args.dataset)
for idx in range(args.num_users):
split_local_layers = []
for layer_idx, layer in enumerate(split_modules):
EXNNLayer_local = Federated_EXNNLayer_local(layer_idx=layer_idx,
local_layer=copy.deepcopy(layer),
client_idx=idx,
adapter=args.fedexnn_adapter,
fedexnn_self_dropout=args.fedexnn_self_dropout)
split_local_layers.append(EXNNLayer_local)
init_model = Federated_EXNN(
args,
idx,
split_local_layers=split_local_layers,
num_of_classes=num_of_classes,
fedexnn_classifer=args.fedexnn_classifer)
local_FedEXNN_models[idx] = init_model
for idx in range(args.fedexnn_split_num):
layer_idx = idx
federated_EXNNLayer_global = merge_layer(local_FedEXNN_models, layer_idx)
federated_EXNNLayer_global.freeze()
# split_local_layers[layer_idx] = federated_EXNNLayer_global
for client_idx in range(args.num_users):
local_FedEXNN_models[client_idx].adaptation(
layer_idx, federated_EXNNLayer_global)
if layer_idx < len(split_config):
actual_layer_index = split_config[layer_idx]
local_FedEXNN_models[client_idx].add_local_layer_adaptor(layer_idx+1,
in_channels=out_channels[actual_layer_index]*args.num_users,
out_channels=out_channels[actual_layer_index])
return local_FedEXNN_models[0]
def fed_expandable(args, device, logger, train_dataset, test_dataset,
train_user_groups, train_data_cls_counts,
test_user_groups, test_data_cls_counts,
global_test_loader, split_modules, out_channels):
bst_acc = -1
description = "inference acc={:.4f}% loss={:.2f}, best_acc = {:.2f}%"
users = []
locals = []
split_config = EXNN_Split_Configs[args.model][args.fedexnn_split_num]
num_of_classes = get_num_of_labels(args.dataset)
before_cls_feature_num = out_channels[-1]
backdoor_test_loader = None
if args.backdoor_train:
backdoor_test_loader = DataLoader(BackdoorDS(test_dataset, args.backdoor_size, mode="random"),
batch_size=256, shuffle=False, num_workers=4)
local_FedEXNN_models = {}
for idx in range(args.num_users):
logger.info("client {}".format(idx))
users.append("client_{}".format(idx))
# split_local_layers = copy.deepcopy(split_modules)
split_local_layers = []
for layer_idx, layer in enumerate(split_modules):
EXNNLayer_local = Federated_EXNNLayer_local(layer_idx=layer_idx,
local_layer=copy.deepcopy(layer),
client_idx=idx,
adapter=args.fedexnn_adapter,
fedexnn_self_dropout=args.fedexnn_self_dropout)
split_local_layers.append(EXNNLayer_local)
init_model = Federated_EXNN(
args,
idx,
split_local_layers=split_local_layers,
num_of_classes=num_of_classes,
fedexnn_classifer=args.fedexnn_classifer)
if args.debug_show_exnn_id:
logging.info(f"==========Checking local layer IDs ================")
logging.info(f"==========Client:{idx}, split_local_layers :{id(split_local_layers)} ================")
for layer_idx, layer in enumerate(split_local_layers):
logging.info(f"==========Client:{idx}, layer_idx{layer_idx} :{id(layer)} ================")
logging.info(f"==========Client:{idx}, init_model :{id(init_model)} ================")
local_FedEXNN_models[idx] = init_model
if args.backdoor_train and idx < args.backdoor_n_clients:
local_update = FedEXNNLocalUpdate(args, train_dataset, test_dataset, global_test_loader,
train_user_groups[idx], test_user_groups[idx], backdoor_train=True)
else:
local_update = FedEXNNLocalUpdate(args, train_dataset, test_dataset, global_test_loader,
train_user_groups[idx], test_user_groups[idx])
locals.append(local_update)
if args.contrastive_train:
# We use a MLP with one hidden layer to obtain z_i = g(h_i) = W(2)σ(W(1)h_i) where σ is a ReLU non-linearity.
projector = obtain_projection_head(before_cls_feature_num, args.contrastive_projection_dim)
local_update.add_CL_head(projector)
# Train and fuse split layers
count_para = 0
# if args.debug:
# show_model_layers(init_model)
for key, value in init_model.named_parameters():
count_para += value.numel()
logger.info(f"init_model has count_para: {count_para}")
for idx in range(args.fedexnn_split_num):
pfl_acc_list = []
training_pfl_acc_list = []
train_losses = []
result_dict = {}
for client_idx in range(args.num_users):
# not load global model, for one-shot communication...
_, train_loss, _, pfl_acc, train_pfl_acc = locals[client_idx].update_weights(
client_idx, args.local_ep, local_FedEXNN_models[client_idx], device, if_test=True)
pfl_acc_list.append(pfl_acc)
training_pfl_acc_list.append(train_pfl_acc)
train_losses.append(train_loss)
result_dict["pfl_acc_on_{}".format(users[client_idx])] = pfl_acc
result_dict["pfl_training_acc_on_{}".format(users[client_idx])] = training_pfl_acc_list[client_idx]
avg_train_loss = np.mean(train_losses)
logger.info(f"test_pfl_acc_list:{pfl_acc_list}")
logger.info(f"training_pfl_acc_list:{training_pfl_acc_list}")
# logger.info(f"test_acc:{test_acc}")
# if idx == 0:
# pass
# else:
layer_idx = idx
logger.info(f"=====Merging Layer : {layer_idx} =====")
federated_EXNNLayer_global = merge_layer(local_FedEXNN_models, layer_idx)
federated_EXNNLayer_global.freeze()
# split_local_layers[layer_idx] = federated_EXNNLayer_global
for client_idx in range(args.num_users):
local_FedEXNN_models[client_idx].adaptation(
layer_idx, federated_EXNNLayer_global)
if args.debug_show_exnn_id:
logging.info(f"==========Checking global layer IDs ================")
model = local_FedEXNN_models[client_idx]
logging.info(f"==========Client:{client_idx}, local_FedEXNN_models.layers[{layer_idx}] : \
\n ========== {id(model.layers[layer_idx])} ================")
for sub_client_idx, local_layer, in federated_EXNNLayer_global.local_layers.items():
if hasattr(local_layer, "adapter_nn"):
logging.info(f"==========In global layer Client:{sub_client_idx}, \
\n ================In global layer local_FedEXNN_models.layers[{layer_idx}].adapter_nn: {id(local_layer.adapter_nn)}")
if layer_idx < len(split_config):
actual_layer_index = split_config[layer_idx]
local_FedEXNN_models[client_idx].add_local_layer_adaptor(layer_idx+1,
in_channels=out_channels[actual_layer_index]*args.num_users,
out_channels=out_channels[actual_layer_index])
if args.debug_show_exnn_id:
if hasattr(model.layers[layer_idx+1], "adapter_nn"):
logging.info(f"==========Client:{client_idx}, \
\n ================local_FedEXNN_models.layers[{layer_idx+1}].adapter_nn: {id(model.layers[layer_idx+1].adapter_nn)}")
if args.debug_show_exnn_id:
measure_model = local_FedEXNN_models[client_idx]
try:
if getattr(measure_model.layers[0], "is_global", False):
logger.info(f'client_idx: {client_idx} layer0 - model weight: {measure_model.layers[0].local_layers["0"].local_layer._layers[0][0].weight.data.norm()}')
if getattr(measure_model.layers[1], "is_global", False):
logger.info(f'client_idx: {client_idx} layer1 - model (is_global) has attr adapter_nn : {hasattr(measure_model.layers[1].local_layers[str(client_idx)], "adapter_nn")}')
logger.info(f'client_idx: {client_idx} layer1 - model (is_global) weight: {measure_model.layers[1].local_layers[str(client_idx)].adapter_nn.weight.data.norm()}')
else:
logger.info(f'client_idx: {client_idx} layer1 - model (isnot_global) has attr adapter_nn : {hasattr(measure_model.layers[1], "adapter_nn")}')
if hasattr(measure_model.layers[1], "adapter_nn"):
logger.info(f'client_idx: {client_idx} layer1 - model (isnot_global) weight: {measure_model.layers[1].adapter_nn.weight.data.norm()}')
if not getattr(measure_model.layers[2], "is_global", False):
logger.info(f'client_idx: {client_idx} local layer2 - model weight: {measure_model.layers[2].local_layer._layers[1].conv1.weight.data.norm()}')
logger.info(f'client_idx: {client_idx} local layer2 - model weight: {measure_model.layers[2].local_layer._layers[1].conv2.weight.data.norm()}')
except:
pass
logger.info(f"=====Finish Merging Layer : {layer_idx} =====")
ExpTool.record(result_dict)
logger.info(f"result_dict: {result_dict}")
ExpTool.record({"comm_round": idx, "local_epoch": args.local_ep, "train_loss": avg_train_loss})
ExpTool.upload()
if args.debug_show_exnn_id:
for client_idx in range(args.num_users):
logging.info(f"==========Checking global layer IDs ================")
model = local_FedEXNN_models[client_idx]
for layer_index, layer in enumerate(model.layers):
logging.info(f"==========Client:{client_idx}, local_FedEXNN_models.layers[{layer_idx}] : \
\n ========== {id(layer)} ================")
for _, model in local_FedEXNN_models.items():
model.to("cpu")
global_model = local_FedEXNN_models[0]
# if args.debug:
# show_model_layers(global_model)
# Train and fuse classifier
if args.fedexnn_classifer == "avg":
new_classifier_weights = average_weights([
local_FedEXNN_model.classifier.cpu().state_dict() for local_FedEXNN_model in local_FedEXNN_models.values()])
new_classifier = list(local_FedEXNN_models.values())[0].classifier
new_classifier.load_state_dict(new_classifier_weights)
elif args.fedexnn_classifer == "multihead":
new_classifier = [
local_FedEXNN_model.classifier for local_FedEXNN_model in local_FedEXNN_models.values()]
else:
raise NotImplementedError
global_model.adaptation_classifier(fedexnn_classifer=args.fedexnn_classifer, new_classifier=new_classifier)
# global_model.train()
global_model.to(device)
# Now, there is no local weights in progressive FL, because the model is increasing...
if args.fedexnn_classifer in ["avg"] :
if args.contrastive_train:
# Get the normal dataloader without n views.
image_size = get_image_size(args.dataset)
_, _, _, _, train_dataset, test_dataset = load_data(
image_size, args.dataset, args.datadir)
dataloaders = {}
for i, local in enumerate(locals):
dataloaders[i] = DataLoader(DatasetSplit(train_dataset, train_user_groups[i]),
batch_size=args.local_bs, shuffle=True, num_workers=4, drop_last=False)
else:
dataloaders = {}
for i, local in enumerate(locals):
dataloaders[i] = local.train_loader
calibrate_classifier(
global_model, None, dataloaders, args.num_classes, args.sample_per_class, args.lr, device)
elif args.fedexnn_classifer == "multihead":
pass
else:
raise NotImplementedError
training_pfl_acc_list = []
# Test global and ensemble model
# NOTE: global weights need not to be averaged
logger.info("avg acc:")
test_acc, test_loss = test(global_model, global_test_loader, device)
pfl_accs = []
result_dict = {}
for idx in range(args.num_users):
local_test_acc, _ = test(global_model, locals[idx].test_loader, device)
result_dict["pfl_acc_on_{}".format(users[idx])] = local_test_acc
pfl_accs.append(local_test_acc)
if args.backdoor_train:
ensemble_backdoor_acc, ensemble_backdoor_loss = test(global_model, backdoor_test_loader, device)
logger.info(f"ensemble_backdoor_acc: {ensemble_backdoor_acc}")
ExpTool.record({"ensemble_backdoor_acc": ensemble_backdoor_acc,
"ensemble_backdoor_loss": ensemble_backdoor_loss})
logger.info(f"pfl_accs: {pfl_accs}")
logger.info(f"training_pfl_acc_list:{training_pfl_acc_list}")
logger.info(f"test_acc:{test_acc}")
ExpTool.record(result_dict)
logger.info(f"result_dict: {result_dict}")
ExpTool.record({"comm_round": args.fedexnn_split_num + 1, "local_epoch": args.local_ep, "train_loss": avg_train_loss, "test_acc": test_acc})
ExpTool.upload()
count_para = 0
for key, value in global_model.named_parameters():
count_para += value.numel()
summary_dict = {"count_paras": count_para}
logger.info(f"global_model's summary_dict: {summary_dict}")
ExpTool.summary(summary_dict)
# ===============================================
if not args.checkpoint == "no":
ExpTool.save_pickle(global_model.cpu().state_dict(), args.checkpoint, exp_dir=True)
# torch.save(global_model.cpu().state_dict(), '{}_{}_{}clients_{}.pkl'.format(args.type, args.dataset, args.num_users, args.alpha))
return global_model