-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathGAN.py
executable file
·177 lines (146 loc) · 6.25 KB
/
GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: GAN.py
# Author: Yuxin Wu <[email protected]>
import tensorflow as tf
import numpy as np
from tensorpack import (ModelDescBase, DataFlow, StagingInput)
from tensorpack.train.tower import TowerTrainer
from tensorpack.tfutils.tower import TowerContext, TowerFuncWrapper
from tensorpack.graph_builder import DataParallelBuilder, LeastLoadedDeviceSetter
from tensorpack.tfutils.summary import add_moving_summary
from tensorpack.utils.argtools import memoized
class GANModelDesc(ModelDescBase):
def collect_variables(self, g_scope='gen', d_scope='discrim'):
"""
Assign self.g_vars to the parameters under scope `g_scope`,
and same with self.d_vars.
"""
self.g_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, g_scope)
assert self.g_vars
self.d_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, d_scope)
assert self.d_vars
def build_losses(self, logits_real, logits_fake, name="GAN_loss"):
"""D and G play two-player minimax game with value function V(G,D)
min_G max _D V(D, G) = IE_{x ~ p_data} [log D(x)] + IE_{z ~ p_fake} [log (1 - D(G(z)))]
Args:
logits_real (tf.Tensor): discrim logits from real samples
logits_fake (tf.Tensor): discrim logits from fake samples produced by generator
"""
with tf.name_scope(name=name):
score_real = tf.sigmoid(logits_real)
score_fake = tf.sigmoid(logits_fake)
tf.summary.histogram('score-real', score_real)
tf.summary.histogram('score-fake', score_fake)
with tf.name_scope("discrim"):
d_loss_pos = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits_real, labels=tf.ones_like(logits_real)), name='loss_real')
d_loss_neg = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits_fake, labels=tf.zeros_like(logits_fake)), name='loss_fake')
d_pos_acc = tf.reduce_mean(tf.cast(score_real > 0.5, tf.float32), name='accuracy_real')
d_neg_acc = tf.reduce_mean(tf.cast(score_fake < 0.5, tf.float32), name='accuracy_fake')
d_accuracy = tf.add(.5 * d_pos_acc, .5 * d_neg_acc, name='accuracy')
self.d_loss = tf.add(.5 * d_loss_pos, .5 * d_loss_neg, name='loss')
with tf.name_scope("gen"):
self.g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits_fake, labels=tf.ones_like(logits_fake)), name='loss')
g_accuracy = tf.reduce_mean(tf.cast(score_fake > 0.5, tf.float32), name='accuracy')
# add_moving_summary(self.g_loss, self.d_loss, d_accuracy, g_accuracy)
return self.g_loss, self.d_loss
@memoized
def get_optimizer(self):
return self._get_optimizer()
class GANTrainer(TowerTrainer):
def __init__(self, input, model):
super(GANTrainer, self).__init__()
assert isinstance(model, GANModelDesc), model
inputs_desc = model.get_inputs_desc()
cbs = input.setup(inputs_desc)
# we need to set towerfunc because it's a TowerTrainer,
# and only TowerTrainer supports automatic graph creation for inference during training.
tower_func = TowerFuncWrapper(model.build_graph, inputs_desc)
with TowerContext('', is_training=True):
tower_func(*input.get_input_tensors())
opt = model.get_optimizer()
# by default, run one d_min after one g_min
with tf.name_scope('optimize'):
g_min = opt.minimize(model.g_loss, var_list=model.g_vars, name='g_op')
with tf.control_dependencies([g_min]):
d_min = opt.minimize(model.d_loss, var_list=model.d_vars, name='d_op')
self.train_op = d_min
self.set_tower_func(tower_func)
for cb in cbs:
self.register_callback(cb)
class SeparateGANTrainer(TowerTrainer):
""" A GAN trainer which runs two optimization ops with a certain ratio."""
def __init__(self, input, model, d_period=1, g_period=1):
"""
Args:
d_period(int): period of each d_opt run
g_period(int): period of each g_opt run
"""
super(SeparateGANTrainer, self).__init__()
self._d_period = int(d_period)
self._g_period = int(g_period)
assert min(d_period, g_period) == 1
cbs = input.setup(model.get_inputs_desc())
tower_func = TowerFuncWrapper(model.build_graph, model.get_inputs_desc())
with TowerContext('', is_training=True):
tower_func(*input.get_input_tensors())
opt = model.get_optimizer()
with tf.name_scope('optimize'):
self.d_min = opt.minimize(
model.d_loss, var_list=model.d_vars, name='d_min')
self.g_min = opt.minimize(
model.g_loss, var_list=model.g_vars, name='g_min')
self.set_tower_func(tower_func)
for cb in cbs:
self.register_callback(cb)
def run_step(self):
if self.global_step % (self._d_period) == 0:
self.hooked_sess.run(self.d_min)
if self.global_step % (self._g_period) == 0:
self.hooked_sess.run(self.g_min)
class MultiGPUGANTrainer(TowerTrainer):
"""
A replacement of GANTrainer (optimize d and g one by one) with multi-gpu support.
"""
def __init__(self, nr_gpu, input, model):
super(MultiGPUGANTrainer, self).__init__()
assert nr_gpu > 1
raw_devices = ['/gpu:{}'.format(k) for k in range(nr_gpu)]
# setup input
input = StagingInput(input, list(range(nr_gpu)))
cbs = input.setup(model.get_inputs_desc())
# build the graph
def get_cost(*inputs):
model.build_graph(inputs)
return [model.d_loss, model.g_loss]
tower_func = TowerFuncWrapper(get_cost, model.get_inputs_desc())
devices = [LeastLoadedDeviceSetter(d, raw_devices) for d in raw_devices]
cost_list = DataParallelBuilder.build_on_towers(
list(range(nr_gpu)),
lambda: tower_func(*input.get_input_tensors()),
devices)
# simply average the cost. It might get faster to average the gradients
with tf.name_scope('optimize'):
d_loss = tf.add_n([x[0] for x in cost_list]) * (1.0 / nr_gpu)
g_loss = tf.add_n([x[1] for x in cost_list]) * (1.0 / nr_gpu)
opt = model.get_optimizer()
# run one d_min after one g_min
g_min = opt.minimize(g_loss, var_list=model.g_vars,
colocate_gradients_with_ops=True, name='g_op')
with tf.control_dependencies([g_min]):
d_min = opt.minimize(d_loss, var_list=model.d_vars,
colocate_gradients_with_ops=True, name='d_op')
self.train_op = d_min
self.set_tower_func(tower_func)
for cb in cbs:
self.register_callback(cb)
class RandomZData(DataFlow):
def __init__(self, shape):
super(RandomZData, self).__init__()
self.shape = shape
def get_data(self):
while True:
yield [np.random.uniform(-1, 1, size=self.shape)]