forked from siphomateke/PyBOW
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathbow_detector.py
165 lines (102 loc) · 5.34 KB
/
bow_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
################################################################################
# functionality: perform detection based on Bag of (visual) Words SVM classification
# using a very basic multi-scale, sliding window (exhaustive search) approach
# This version: (c) 2018 Toby Breckon, Dept. Computer Science, Durham University, UK
# License: MIT License
# Origin ackowledgements: forked from https://github.com/siphomateke/PyBOW
################################################################################
import cv2
import os
import numpy as np
import math
import params
from utils import *
from sliding_window import *
################################################################################
directory_to_cycle = "pedestrian/INRIAPerson/Test/pos/";
show_scan_window_process = True;
################################################################################
# load dictionary and SVM data
try:
dictionary = np.load(params.BOW_DICT_PATH)
svm = cv2.ml.SVM_load(params.BOW_SVM_PATH)
except:
print("Missing files - dictionary and/or SVM!");
print("-- have you performed training to produce these files ?");
exit();
# print some checks
print("dictionary size : ", dictionary.shape)
print("svm size : ", len(svm.getSupportVectors()))
print("svm var count : ", svm.getVarCount())
################################################################################
# process all images in directory (sorted by filename)
for filename in sorted(os.listdir(directory_to_cycle)):
# if it is a PNG file
if '.png' in filename:
print(os.path.join(directory_to_cycle, filename));
# read image data
img = cv2.imread(os.path.join(directory_to_cycle, filename), cv2.IMREAD_COLOR)
# make a copy for drawing the output
output_img = img.copy();
# for a range of different image scales in an image pyramid
current_scale = -1
detections = []
rescaling_factor = 1.25
################################ for each re-scale of the image
for resized in pyramid(img, scale=rescaling_factor):
# at the start our scale = 1, because we catch the flag value -1
if current_scale == -1:
current_scale = 1
# after this rescale downwards each time (division by re-scale factor)
else:
current_scale /= rescaling_factor
rect_img = resized.copy()
# if we want to see progress show each scale
if (show_scan_window_process):
cv2.imshow('current scale',rect_img)
cv2.waitKey(10);
# loop over the sliding window for each layer of the pyramid (re-sized image)
window_size = params.DATA_WINDOW_SIZE
step = math.floor(resized.shape[0] / 16)
if step > 0:
############################# for each scan window
for (x, y, window) in sliding_window(resized, window_size, step_size=step):
# if we want to see progress show each scan window
if (show_scan_window_process):
cv2.imshow('current window',window)
key = cv2.waitKey(10) # wait 10ms
# for each window region get the BoW feature point descriptors
img_data = ImageData(window)
img_data.compute_bow_descriptors()
# generate and classify each window by constructing a BoW
# histogram and passing it through the SVM classifier
if img_data.bow_descriptors is not None:
img_data.generate_bow_hist(dictionary)
print("detecting with SVM ...")
retval, [result] = svm.predict(np.float32([img_data.bow_histogram]))
print(result)
# if we get a detection, then record it
if result[0] == params.DATA_CLASS_NAMES["pedestrian"]:
# store rect as (x1, y1) (x2,y2) pair
rect = np.float32([x, y, x + window_size[0], y + window_size[1]])
# if we want to see progress show each detection, at each scale
if (show_scan_window_process):
cv2.rectangle(rect_img, (rect[0], rect[1]), (rect[2], rect[3]), (0, 0, 255), 2)
cv2.imshow('current scale',rect_img)
cv2.waitKey(10)
rect *= (1.0 / current_scale)
detections.append(rect)
########################################################
# For the overall set of detections (over all scales) perform
# non maximal suppression (i.e. remove overlapping boxes etc).
detections = non_max_suppression_fast(np.int32(detections), 0.4)
# finally draw all the detection on the original image
for rect in detections:
cv2.rectangle(output_img, (rect[0], rect[1]), (rect[2], rect[3]), (0, 0, 255), 2)
cv2.imshow('detected objects',output_img)
key = cv2.waitKey(40) # wait 40ms
if (key == ord('x')):
break
# close all windows
cv2.destroyAllWindows()
#####################################################################