forked from siphomateke/PyBOW
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathhog_train.py
125 lines (78 loc) · 4.74 KB
/
hog_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
################################################################################
# functionality: perform all stages of HOG/SVM training over
# a specified dataset and compute the resulting prediction/clasification error
# over that same dataset, having saved the SVM model to file for subsequent re-use
# This version: (c) 2018 Toby Breckon, Dept. Computer Science, Durham University, UK
# License: MIT License
# Minor portions: based on fork from https://github.com/siphomateke/PyBOW
################################################################################
import cv2
from utils import *
################################################################################
def main():
############################################################################
# load our training data set of images examples
program_start = cv2.getTickCount()
print("Loading images...")
start = cv2.getTickCount()
# N.B. specify data path names in same order as class names (neg, pos)
paths = [params.DATA_training_path_neg, params.DATA_training_path_pos]
# build a lisyt of class names automatically from our dictionary of class (name,number) pairs
class_names = [get_class_name(class_number) for class_number in range(len(params.DATA_CLASS_NAMES))]
# specify number of sub-window samples to take from each positive and negative
# example image in the data set
# N.B. specify in same order as class names (neg, pos) - again
sampling_sizes = [params.DATA_training_sample_count_neg, params.DATA_training_sample_count_pos]
# do we want to take samples only centric to the example image or ramdonly?
# No - for background -ve images (first class)
# Yes - for object samples +ve images (second class)
sample_from_centre = [False, True];
# perform image loading
imgs_data = load_images(paths, class_names, sampling_sizes, sample_from_centre,
params.DATA_WINDOW_OFFSET_FOR_TRAINING_SAMPLES, params.DATA_WINDOW_SIZE);
print(("Loaded {} image(s)".format(len(imgs_data))))
print_duration(start)
############################################################################
# perform HOG feature extraction
print("Computing HOG descriptors...") # for each training image
start = cv2.getTickCount()
[img_data.compute_hog_descriptor() for img_data in imgs_data]
print_duration(start)
############################################################################
# train an SVM based on these norm_features
print("Training SVM...")
start = cv2.getTickCount()
# define SVM parameters
svm = cv2.ml.SVM_create()
svm.setType(cv2.ml.SVM_C_SVC) # change this for multi-class
svm.setKernel(params.HOG_SVM_kernel) # use specific kernel type (alteratives exist)
# compile samples (i.e. visual word histograms) for each training image
samples = get_hog_descriptors(imgs_data)
# get class label for each training image
class_labels = get_class_labels(imgs_data);
# specify the termination criteria for the SVM training
svm.setTermCriteria((cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, params.HOG_SVM_max_training_iterations, 1.e-06))
# perform auto training for the SVM which will essentially perform grid
# search over the set of parameters for the chosen kernel and the penalty
# cost term, C (N.B. trainAuto() syntax is correct as of OpenCV 3.4.x)
svm.trainAuto(samples, cv2.ml.ROW_SAMPLE, class_labels, kFold = 10, balanced = True);
# save the tained SVM to file so that we can load it again for testing / detection
svm.save(params.HOG_SVM_PATH)
############################################################################
# measure performance of the SVM trained on the bag of visual word features
# perform prediction over the set of examples we trained over
output = svm.predict(samples)[1].ravel()
error = (np.absolute(class_labels.ravel() - output).sum()) / float(output.shape[0])
# we are succesful if our prediction > than random
# e.g. for 2 class labels this would be 1/2 = 0.5 (i.e. 50%)
if error < (1.0 / len(params.DATA_CLASS_NAMES)):
print("Trained SVM obtained {}% training set error".format(round(error * 100,2)))
print("-- meaining the SVM got {}% of the training examples correct!".format(round((1.0 - error) * 100,2)))
else:
print("Failed to train SVM. {}% error".format(round(error * 100,2)))
print_duration(start)
print(("Finished training BOW detector. {}".format(format_time(get_elapsed_time(program_start)))))
################################################################################
if __name__ == '__main__':
main()
################################################################################