forked from vishalned/MMEarth-train
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_pretrain.py
349 lines (270 loc) · 13.6 KB
/
main_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import datetime
import numpy as np
import time
import json
import os
import uuid
from pathlib import Path
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import timm
# assert timm.__version__ == "0.3.2" # version check
import timm.optim.optim_factory as optim_factory
from engine_pretrain import train_one_epoch
from custom_dataset import build_pretraining_dataset
from custom_loss import UncertaintyWeightingStrategy
import models.fcmae as fcmae
import utils
from utils import NativeScalerWithGradNormCount as NativeScaler
from utils import str2bool
from MODALITIES import *
import wandb
def get_args_parser():
parser = argparse.ArgumentParser('FCMAE pre-training', add_help=False)
# wandb parameters
parser.add_argument('--wandb', type=str2bool, default=False)
parser.add_argument('--wandb_project', type=str, default='global-lr')
parser.add_argument('--wandb_run_name', type=str)
parser.add_argument('--batch_size', default=64, type=int,
help='Per GPU batch size')
parser.add_argument('--epochs', default=800, type=int)
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N',
help='epochs to warmup LR')
parser.add_argument('--update_freq', default=1, type=int,
help='gradient accumulation step')
# loss parameters
parser.add_argument('--loss_aggr', choices=['uncertainty', 'unweighted'], default='uncertainty',
help='loss aggregation method')
parser.add_argument('--loss_full', type=str2bool, default='False',
help='compute loss on all pixels or only on masked pixels') # true means compute loss on all pixels
# Model parameters
parser.add_argument('--model', default='convnextv2_pico', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input_size', default=112, type=int,
help='image input size')
parser.add_argument('--mask_ratio', default=0.6, type=float,
help='Masking ratio (percentage of removed patches).')
parser.add_argument('--norm_pix_loss', type=str2bool, default=False,
help='Use (per-patch) normalized pixels as targets for computing loss')
parser.add_argument('--decoder_depth', type=int, default=1)
parser.add_argument('--decoder_embed_dim', type=int, default=512)
parser.add_argument('--patch_size', type=int, default=16)
parser.add_argument('--use_orig_stem', type=str2bool, default=False)
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1.5e-4, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
# Dataset parameters
parser.add_argument('--data_path', default='/projects/dereeco/data/global-lr/data_1M_130_new/data_1M_130_new.h5', type=str,
help='path to the h5 file')
parser.add_argument('--random_crop', type=str2bool, default=True)
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default=None,
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--auto_resume', type=str2bool, default=True)
parser.add_argument('--save_ckpt', type=str2bool, default=True)
parser.add_argument('--save_ckpt_freq', default=1, type=int)
parser.add_argument('--save_ckpt_num', default=3, type=int)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', type=str2bool, default=True,
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
# Evaluation parameters
parser.add_argument('--crop_pct', type=float, default=None)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', type=str2bool, default=False)
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
return parser
def main(args):
utils.init_distributed_mode(args)
# args.distributed = False
print(args)
############# creating some additional args variables to be used by other functions #############
args.inp_modalities = INP_MODALITIES
args.out_modalities = OUT_MODALITIES
args.modalities = args.inp_modalities.copy()
args.modalities.update(args.out_modalities)
args.modalities_full = MODALITIES_FULL
if not args.IMNET:
args.data_name = args.data_path.split('.')[0].split('/')[-1]
args.splits_path = args.data_path.split('.')[0] + '_splits.json'
args.tile_info_path = args.data_path.split('.')[0] + '_tile_info.json'
args.band_stats_path = args.data_path.split('.')[0] + '_band_stats.json'
# incase needed - hardcoding the paths
# args.data_name = 'data_1M_130_new'
# args.splits_path = '/projects/dereeco/data/global-lr/data_1M_130_new/data_1M_130_new_splits.json'
# args.tile_info_path = '/projects/dereeco/data/global-lr/data_1M_130_new/data_1M_130_new_tile_info.json'
# args.band_stats_path = '/projects/dereeco/data/global-lr/data_1M_130_new/data_1M_130_new_band_stats.json'
# quick check to see if all the files exist
assert os.path.exists(args.data_path), "Data file does not exist"
assert os.path.exists(args.splits_path), "Split file does not exist"
assert os.path.exists(args.tile_info_path), "Tile info file does not exist"
assert os.path.exists(args.band_stats_path), "Band stats file does not exist"
args.band_stats = json.load(open(args.band_stats_path, 'r'))
args.tile_info = json.load(open(args.tile_info_path, 'r'))
#################################################################################################
if args.wandb and args.local_rank == 0:
print("Logging to wandb")
config = {
'model': args.model ,
'mask_ratio': args.mask_ratio,
'norm_pix_loss': args.norm_pix_loss,
'loss_type': args.loss_type,
'loss_aggr': args.loss_aggr,
'loss_full': args.loss_full,
'patch_size': args.patch_size,
'input_size': args.input_size,
'blr': args.blr,
'batch_size': args.batch_size,
'update_freq': args.update_freq,
'use_orig_stem': args.use_orig_stem
}
wandb.init(project=args.wandb_project, config=config)
wandb.run.name = args.wandb_run_name
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
# custom multimodal dataset
dataset_train = build_pretraining_dataset(is_train=True, args=args)
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True, seed=args.seed,
)
print("Sampler_train = %s" % str(sampler_train))
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
# log_writer = SummaryWriter(log_dir=args.log_dir)
log_writer = utils.TensorboardLogger(log_dir=args.log_dir)
else:
log_writer = None
def collate_fn(batch):
# for each batch append the samples of the same modality together and return the ids. We keep track of the ids to differentiate between sentinel2_l1c and sentinel2_l2a
return_batch = {}
ids = [b['id'] for b in batch]
return_batch = {modality: torch.stack([b[modality] for b in batch], dim=0) for modality in args.modalities.keys()}
return ids, return_batch
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
collate_fn=collate_fn if not args.IMNET else None,
)
if args.loss_aggr == 'uncertainty':
num_tasks = len(args.out_modalities) # in this case we have one uncertainty value per modality
loss_fn = UncertaintyWeightingStrategy(num_tasks)
else:
loss_fn = None
# define the model
model = fcmae.__dict__[args.model](
mask_ratio=args.mask_ratio,
decoder_depth=args.decoder_depth,
decoder_embed_dim=args.decoder_embed_dim,
norm_pix_loss=args.norm_pix_loss,
patch_size=args.patch_size,
img_size=args.input_size,
args=args,
loss_fn=loss_fn
)
model.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
n_parameters_encoder = sum(p.numel() for p in model.encoder.parameters() if p.requires_grad)
print("Model = %s" % str(model_without_ddp))
print('number of params:', n_parameters)
print('number of params in encoder:', n_parameters_encoder)
eff_batch_size = args.batch_size * args.update_freq * utils.get_world_size()
num_training_steps_per_epoch = len(dataset_train) // eff_batch_size
if args.lr is None:
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.update_freq)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False)
model_without_ddp = model.module
param_groups = optim_factory.add_weight_decay(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
loss_scaler = NativeScaler()
utils.auto_load_model(
args=args, model=model, model_without_ddp=model_without_ddp,
optimizer=optimizer, loss_scaler=loss_scaler)
######## Training loop ########
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
best_loss = 100000
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
if log_writer is not None:
log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq)
train_stats, loss_dict, log_var_list, normalized_loss_list = train_one_epoch(
model, data_loader_train,
optimizer, device, epoch, loss_scaler,
log_writer=log_writer,
args=args
)
if args.output_dir and args.save_ckpt:
if (epoch+1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.wandb and utils.is_main_process():
# we also log multiple loss values and log_var values if its not None
loss_dict_keys = []
for k, v in loss_dict.items():
log_stats[f'train_{k}'] = v
loss_dict_keys.append(k)
if log_var_list is not None:
for i, v in enumerate(log_var_list):
mod = loss_dict_keys[i]
log_stats[f'log_var_{mod}'] = v
if normalized_loss_list is not None:
for i, v in enumerate(normalized_loss_list):
mod = loss_dict_keys[i]
log_stats[f'normalized_loss_{mod}'] = v
wandb.log(log_stats)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
wandb.finish()
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)