-
Notifications
You must be signed in to change notification settings - Fork 962
/
Copy pathLinearWeightNorm.lua
executable file
·168 lines (126 loc) · 4.41 KB
/
LinearWeightNorm.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
local LinearWeightNorm, parent = torch.class('nn.LinearWeightNorm', 'nn.Linear')
function LinearWeightNorm:__init(inputSize, outputSize, bias, eps)
nn.Module.__init(self) -- Skip nn.Linear constructor
local bias = ((bias == nil) and true) or bias
self.eps = eps or 1e-16
self.outputSize = outputSize
self.inputSize = inputSize
self.v = torch.Tensor(outputSize, inputSize)
self.gradV = torch.Tensor(outputSize, inputSize)
self.weight = torch.Tensor(outputSize, inputSize)
self.g = torch.Tensor(outputSize,1)
self.gradG = torch.Tensor(outputSize,1)
self.norm = torch.Tensor(outputSize,1)
self.scale = torch.Tensor(outputSize,1)
if bias then
self.bias = torch.Tensor(outputSize)
self.gradBias = torch.Tensor(outputSize)
end
self:reset()
end
function LinearWeightNorm:evaluate()
if self.train ~= false then
self:updateWeightMatrix()
end
parent.evaluate(self)
end
function LinearWeightNorm:initFromWeight(weight)
weight = weight or self.weight
self.g:norm(weight,2,2):clamp(self.eps,math.huge)
self.v:copy(weight)
return self
end
function LinearWeightNorm.fromLinear(linear)
local module = nn.LinearWeightNorm(linear.weight:size(2), linear.weight:size(1), torch.isTensor(linear.bias))
module.weight:copy(linear.weight)
module:initFromWeight()
if linear.bias then
module.bias:copy(linear.bias)
end
return module
end
function LinearWeightNorm:toLinear()
self:updateWeightMatrix()
local module = nn.Linear(self.inputSize, self.outputSize, torch.isTensor(self.bias))
module.weight:copy(self.weight)
if self.bias then
module.bias:copy(self.bias)
end
return module
end
function LinearWeightNorm:parameters()
if self.bias then
return {self.v, self.g, self.bias}, {self.gradV, self.gradG, self.gradBias}
else
return {self.v, self.g}, {self.gradV, self.gradG}
end
end
function LinearWeightNorm:reset(stdv)
if stdv then
stdv = stdv * math.sqrt(3)
else
stdv = 1 / math.sqrt(self.inputSize)
end
self.weight:uniform(-stdv,stdv)
self:initFromWeight()
if self.bias then
self.bias:uniform(-stdv,stdv)
end
end
function LinearWeightNorm:updateWeightMatrix()
if self.norm:dim() == 0 then self.norm:resizeAs(self.g) end
if self.scale:dim() == 0 then self.scale:resizeAs(self.g) end
if self.weight:dim() == 0 then self.weight:resizeAs(self.v) end
self.norm:norm(self.v,2,2):clamp(self.eps,math.huge)
self.scale:cdiv(self.g,self.norm)
self.weight:cmul(self.v,self.scale:expandAs(self.v))
end
function LinearWeightNorm:updateOutput(input)
if self.train ~= false then
self:updateWeightMatrix()
end
return parent.updateOutput(self, input)
end
function LinearWeightNorm:accGradParameters(input, gradOutput, scale)
scale = scale or 1
if input:dim() == 1 then
self.gradV:addr(scale, gradOutput, input)
if self.bias then self.gradBias:add(scale, gradOutput) end
elseif input:dim() == 2 then
self.gradV:addmm(scale, gradOutput:t(), input)
if self.bias then
-- update the size of addBuffer if the input is not the same size as the one we had in last updateGradInput
self:updateAddBuffer(input)
self.gradBias:addmv(scale, gradOutput:t(), self.addBuffer)
end
end
local scale = self.scale:expandAs(self.v)
local norm = self.norm:expandAs(self.v)
self.weight:cmul(self.gradV,self.v):cdiv(norm)
self.gradG:sum(self.weight,2)
self.gradV:cmul(scale)
self.weight:cmul(self.v,scale):cdiv(norm)
self.weight:cmul(self.gradG:expandAs(self.weight))
self.gradV:add(-1,self.weight)
end
function LinearWeightNorm:defaultAccUpdateGradParameters(input, gradOutput, lr)
local gradV = self.gradV
local gradG = self.gradG
local gradBias = self.gradBias
self.gradV = self.v
self.gradG = self.g
self.gradBias = self.bias
self:accGradParameters(input, gradOutput, -lr)
self.gradV = gradV
self.gradG = gradG
self.gradBias = gradBias
end
function LinearWeightNorm:clearState()
nn.utils.clear(self, 'weight', 'norm', 'scale')
return parent.clearState(self)
end
function LinearWeightNorm:__tostring__()
return torch.type(self) ..
string.format('(%d -> %d)', self.inputSize, self.outputSize) ..
(self.bias == nil and ' without bias' or '')
end